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ABSTRACT
Millions of content gets created daily on platforms like YouTube,
Facebook, TikTok etc. Most of such large scale recommender sys-
tems are data demanding, thus taking substantial time for content
embedding to mature. This problem is aggravated when there is no
behavioral data available for new content. Poor quality recommen-
dation for these items lead to user dissatisfaction and short content
shelf-life. In this paper we propose a solutionMEMER (Multimodal
Encoder forMulti-signalEarly-stageRecommendations), that utilises
the multimodal semantic information of content and uses it to gen-
erate better quality embeddings for early-stage items. We demon-
strate the flexibility of the framework by extending it to various
explicit and implicit user actions. Using these learnt embeddings,
we conduct offline and online experiments to verify its effective-
ness. The predicted embeddings show significant gains in online
early-stage experiments for both videos and images (videos: 44%
relative gain in click through rate, 46% relative gain in explicit en-
gagements, 9% relative gain in successful video play, 20% relative
reduction in skips, images: 56% relative gain in explicit engage-
ments). This also compares well against the performance of mature
embeddings (83.3% RelaImpr (RI) [18] in Successful Video Play,
97.8% RelaImpr in Clicks).
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1 INTRODUCTION
Early stage recommendation plays a pivotal role in the journey of a
content during its lifecycle. Traditional recommendation techniques
like collaborative filtering, content-based filtering have proven to
be useful for a considerable amount of time. Recent studies have
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shown that embedding based approaches are better for item cold
start recommendation than traditional approaches because they
can learn low-dimensional representations of items, allowing them
to recommend new items to users even when metadata like title,
genre is not available. Additionally, these approaches can scale to
millions to items and users. But most of such large scale recom-
mender systems are data demanding, thus taking substantial time
for content embedding to mature. For example, based on our ob-
servations, Figure 1, it takes ~20k views for an item embedding
to stabilize for an interaction dependent algorithm. This problem
is aggravated when there is no behavioral data available for new
content. Due to this, recommender systems which are trained on
historical behavioral data are insufficiently trained for new items
leading to poor performance in online early stage recommendation
[8, 10].

Given the importance, there has been a lot of interest recently
both in academia and research divisions of major internet compa-
nies to address the item cold-start recommendation. CB2CF [1],
Heater [21] are improvements on top of CF based approaches.
CLCRec [17] tries to solve early stage ranking by maximizing the
mutual dependencies between item content and collaborative sig-
nals. All the mentioned approaches are not very flexible because
they are specifically designed for CF-based backbone models. There
are some model-agnostic approaches like DropoutNet [16] which
applies dropout to learn to reproduce the accuracy of the input
latent model when preference data is available while also generaliz-
ing to cold start. Meta Embedding [12] and MeLU [9] utilizes a meta
learning approach to learn initial desirable embeddings for new
items. It leverages the representations of previously learnt items
using a gradient based approach. MWUF [20] proposes meta scal-
ing and meta shifting networks to warm up cold item embeddings.
Even the model-agnostic approaches like DropoutNet, MeLU and
MWUF have limitations because of strict data requirements to learn
cold item embeddings. CVAR [19] takes a step further by removing
extra requirements for data and uses latent variables to learn a
distribution over item side information. It generates desirable item
ID embeddings using a conditional decoder. But CVAR only utilizes
categorical variables in the form of one-hot vectors as item side
information. This leads to two problems, (1) Non-linearity is not
captured [13] (2) Using only categorical features impacts fairness
in early stage recommendation

In this paper, we work on the videos uploaded on the Indian
social media platform ShareChat. We propose a multimodal ap-
proach to capture the semantic information of content and use
it to enhance the early stage recommendation where behavioral
information is absent. We leverage the audio, visual, text features
extracted through DNNs and club it with other auxiliary features
to achieve the desired embeddings. We also prove the efficacy of
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Figure 1: Embedding Maturity Curve (Video Play Signal)

this approach on a variety of explicit and implicit signals [3, 6, 15]
in the context of recommendation in social media. We prove this
through a series of offline and online experiments where we ob-
serve a relative gain of 43.9%, 46.14%, 9.07% in online metrics (CTR,
explicit engagements and Successful video play respectively) and
gains of similar magnitude in offline metrics in terms of AUC, F1
and RelaImpr (RI) [18]. We also show that MEMER achieves fairness
by ensuring equitable performance across different categories of
content. This provides a level ground to all the content irrespec-
tive of historical popularity which would not be the case if only
behavioral information is taken into consideration.

2 PROPOSED APPROACH
2.1 Model
2.1.1 Problem Statement. Given the user-item interactions and
semantic side-information of items, our goal is to learn a model
that can generate embeddings for early-stage items and thus provide
personalized recommendations.

2.1.2 Methodology. A base backbone model (Field-aware Factor-
ization Machines [7]) is trained on all user-item interactions. The
model is behavioural-based and performs well for items having
sufficient data. Such items which have crossed a maturity threshold
(M) are considered Old Items within the system. Using interac-
tions and semantic understanding of these old items, we train the
MEMER model to transform semantic embeddings to the space of
base model FFM.

2.1.3 Architecture. The proposed MEMER model (Figure 2b) con-
sists of encoders, decoder and a multimodal semantic module. The
encoders and decoder are standard neural networks motivated by
the ones proposed in [19]. In addition to this, we propose a semantic
module which aims to leverage the spatio-temporal information
of items through semantic audio-visual-textual features and gener-
ate personalized recommendations for users in the early stage of
an item. The proposed model trains on the user-item interactions
using mature embeddings of the backbone model with additional
semantic audio-visual-textual feature information of the items.

Encoders. Encoder 𝑒𝑛𝑐1 takes the mature FFM (base) embedding
of an item i (denoted by 𝑣𝑖 , where 𝑣𝑖 ∈ R𝑑 ) and produces output 𝑒1.

𝑒1 = 𝑒𝑛𝑐1 (𝑣𝑖 ) (1)

Encoder 𝑒𝑛𝑐2 takes the fused features of item i, generated from
the semantic module using multi-modal information (denoted by

𝑓 𝑒𝑎𝑡𝑖 ), and produces output 𝑒2.

𝑒2 = 𝑒𝑛𝑐2 (𝑓 𝑒𝑎𝑡𝑖 ) (2)

Decoder. Decoder 𝑑𝑒𝑐1 jointly works on the output of both the
encoders and produces reconstructed embedding (𝑝𝑟𝑒𝑐𝑜𝑛) and pre-
dicted embedding (𝑝𝑟𝑒𝑐 ). It also takes frequency (𝑓 𝑟𝑒𝑞) as an input
which is the normalized count of item i to make the model aware
of the stage of the item. Low 𝑓 𝑟𝑒𝑞 would represent early stages and
so on.

𝑝𝑟𝑒𝑐𝑜𝑛 = 𝑑𝑒𝑐1 (𝑒1, 𝑓 𝑟𝑒𝑞) (3)

𝑝𝑟𝑒𝑐 = 𝑑𝑒𝑐1 (𝑒2, 𝑓 𝑟𝑒𝑞) (4)

Multimodal Semantic Module. 𝑉𝑖 , 𝐴𝑖 and 𝑇𝑖 represent the visual,
audio and textual features extracted from feature extraction models
as explained in 2.2. We perform an early-fusion of the embeddings
and train a non-linear neural network on it (𝑊 and𝑏 are the weights
and biases of the network). It generates an output 𝑓 𝑒𝑎𝑡𝑖 which is a
non-linear low-dimensional semantic representation of item i.

𝑓 𝑒𝑎𝑡𝑖 = 𝜎 (𝑊 (𝑉𝑖 ⊕ 𝐴𝑖 ⊕ 𝑇𝑖 ⊕ 𝐴𝑢𝑥𝑖 ) + 𝑏) (5)

Training Objective. 𝐿𝑤 refers to the wasserstein distance [14]
between 𝑒𝑛𝑐1, 𝑒𝑛𝑐2.

𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 = 𝐿𝑤 (𝑒𝑛𝑐1, 𝑒𝑛𝑐2) (6)

𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 is the mean-squared-error between 𝑝𝑟𝑒𝑐𝑜𝑛 and 𝑣𝑖 .
MSE is a measure of the difference between the original and the
reconstructed signals, and it quantifies how well the reconstruction
process has preserved the original signal.

𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 =

𝑑∑︁
𝑗=1

(𝑝 𝑗𝑟𝑒𝑐𝑜𝑛 − 𝑣
𝑗
𝑖
)2 (7)

𝑆𝑝𝑟𝑒𝑑 is the dot product between the user embedding and the pre-
dicted item embedding; 𝑧𝑝𝑟𝑒𝑑 is the sigmoid of 𝑆𝑝𝑟𝑒𝑑 ;𝐿𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛

is the binary cross entropy loss which optimizes the log-likelihood,
is easy to compute, penalizes confident wrong predictions, handles
class imbalance, and works well for probabilistic models

𝑆𝑝𝑟𝑒𝑑 = 𝑣
𝑝𝑟𝑒𝑑

𝑒𝑎𝑟𝑙𝑦
· 𝑣𝑢 (8)

𝑧𝑝𝑟𝑒𝑑 =
1

1 + 𝑒−𝑆𝑝𝑟𝑒𝑑
(9)

𝐿𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 = −(𝑦 log(𝑧𝑝𝑟𝑒𝑑 ) + (1 − 𝑦) log(1 − 𝑧𝑝𝑟𝑒𝑑 )) (10)

𝐿𝑀𝐸𝑀𝐸𝑅 : Combined weighted loss of all the individual losses de-
fined above

𝐿𝑀𝐸𝑀𝐸𝑅 = 𝛼𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟 + 𝛽𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 +𝛾𝐿𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 (11)

𝛼 , 𝛽 and 𝛾 are hyper-parameters and we select the set of values
that produce the best overall performance on our test dataset using
random search. We also take into account the relative scales of the
individual losses and the desired trade-off between them.
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Figure 2: Platform Signals and Model Overview

2.2 Feature Extraction
2.2.1 Visual Embeddings. For videos, we leverage the pretrained
Resnext3d-101 model [11] for visual feature extraction. Our ap-
proach involves sampling frames at 18FPS, followed by averaging
to generate a single 2048-D embedding per second. We further aver-
age pool across seconds to get one representative 2048D embedding
per video. Resnext3d-101 model is trained on Kinetics 400 dataset
and can effectivey capture spatiotemporal information in video
sequences. For images, we use Densenet161 [5] model and extract
the 2208-D penultimate layer for features. This model has been
trained on ImageNet dataset and performs robustly well on a range
of image based computer vision applications.

2.2.2 Audio Embeddings. We extract the audio channel from our
videos and it is sampled at 16kHz to get the output audio stream.
This is then fed into a pre-trained VGG model [4] to extract the
audio embeddings. VGGish is trained for sound classification and
produces high-level semantically meaningful 128-D embeddings.

2.2.3 Text Embeddings. We also extract text from image frames
and then use a pre-trained Fasttext [2] model to generate 100-D
embeddings for the extracted text. The model is fast and efficient
in capturing subword information.

2.3 Inference
During inference, the required features of an early-stage item are
extracted and passed through the trained model to generate a fixed
32-dimension embedding vector. This vector is then used to cal-
culate the dot product with the user embedding (𝑣𝑢 ), producing a
score that indicates the likelihood of the user interacting with the
item. This score is then used for personalized item suggestions at
user-level. For an early-stage item,

𝑣
𝑝𝑟𝑒𝑑

𝑒𝑎𝑟𝑙𝑦
= 𝑑𝑒𝑐1 (𝑒𝑛𝑐2 (𝑓 𝑒𝑎𝑡𝑒𝑎𝑟𝑙𝑦), 𝑓 𝑟𝑒𝑞𝑒𝑎𝑟𝑙𝑦) (12)

𝑆
𝑝𝑟𝑒𝑑

𝑒𝑎𝑟𝑙𝑦
= 𝑣

𝑝𝑟𝑒𝑑

𝑒𝑎𝑟𝑙𝑦
· 𝑣𝑢 (13)

3 EXPERIMENTS
3.1 Offline
3.1.1 Dataset. We collect the video and image post interactions
data in Hindi language for a period of 40 days for multiple implicit
(Video Play - if a user successfully watches a recommended video
beyond a certain threshold, Skip) and explicit (Click, Like, Share,

Favorite) signals. Along with the interactions, we also have the user
embedding, item embedding and item semantic features. We also
have tag field available corresponding to all the posts. For the train
split, we take the posts created in the starting 33 days which have
crossed the required threshold (M) to be considered as old items. To
get an estimate of M, we evaluate the running cosine distance across
view counts for embeddings at t and t-1, as shown in Figure 1. We
observe the value on x-axis when the distance between embeddings
starts tending to 0 and use this as the threshold (M). Similarly,
posts created in the last 7-day period are taken in the test split.
We randomly sample negatives per each positive interaction of a
post in training. To compare our early-stage embeddings with the
matured embeddings of the base model, we take test posts that have
also crossed required threshold (M). Dataset details are summarized
in Table 1.

Table 1: Dataset Statistics

Signal Split No. of Users No. of Items No. of Interactions

V
ID

EO

Click Train 30,647,285 154,644 1,030,517,743
Test 21,746,963 21,011 1,072,692,829

Video Play Train 43,939,529 179,804 7,246,081,748
Test 10,739,212 17,191 79,036,346

Skip Train 29,864,325 179,824 5,613,192,373
Test 8,594,674 3,977 39,615,433

Like Train 28,987,643 154,969 1,523,268,936
Test 6,863,130 2,897 30,066,371

Share Train 21,236,448 138,869 487,987,856
Test 5,697,818 2,572 24,292,208

Favorite Train 28,389,195 151,385 1,326,606,212
Test 7,122,308 2,831 30,703,720

IM
A
G
E

Click Train 10,593,267 117,696 54,908,003
Test 2,663,538 14,120 146,456,845

Like Train 15,892,357 128566 265,046,064
Test 3,537,010 15,243 202,432,864

Share Train 14,360,774 98,627 243,284,943
Test 3,683,436 11,975 175,449,454

Favorite Train 20,960,965 126,368 610,157,595
Test 6,883,538 14,582 294,611,311

3.1.2 Baselines. We compare the proposed embeddings with some
of the most commonly used initialization methods [Fig1].

(1) Random init, where values are sampled from a normal dis-
tribution.

(2) Global average [20], 𝑋𝑠𝑖𝑔𝑛𝑎𝑙 = (∑𝑁 𝑥𝑠𝑖𝑔𝑛𝑎𝑙 )/𝑁 which is the
average of all post embeddings in the training corpus.
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Table 2: Offline Results

V
ID

EO

Methods Click Video Play Skip Like Share Favorite
AUC F1 RI(%) AUC F1 RI(%) AUC F1 RI(%) AUC F1 RI(%) AUC F1 RI(%) AUC F1 RI(%)

Random 0.533 0.039 8.70 0.500 0.151 -0.15 0.500 0.430 -0.30 0.503 0.071 0.81 0.505 0.045 1.65 0.499 0.080 -0.36
Global Avg 0.763 0.056 69.0 0.604 0.197 66.2 0.546 0.481 42.1 0.885 0.159 98.6 0.753 0.076 86.0 0.715 0.133 84.4
Tag Avg 0.724 0.049 58.6 0.605 0.190 66.7 0.559 0.501 54.5 0.855 0.136 91.1 0.733 0.078 79.3 0.698 0.134 77.6

MEMER (Video) 0.867 0.066 96.1 0.627 0.205 81.0 0.595 0.505 87.4 0.886 0.158 98.9 0.760 0.081 88.5 0.728 0.139 89.3
MEMER (Visual + Audio) 0.873 0.067 97.8 0.631 0.207 83.3 0.600 0.508 91.8 0.887 0.160 99.1 0.766 0.086 90.7 0.731 0.144 90.7

IM
A
G
E Methods Click Like Share Favorite

AUC F1 RI(%) AUC F1 RI(%) AUC F1 RI(%) AUC F1 RI(%)
Global Avg 0.631 0.017 50.2 0.843 0.113 93.9 0.701 0.118 63.1 0.701 0.130 64.9
Tag Avg 0.574 0.015 28.3 0.856 0.091 97.4 0.741 0.135 75.9 0.745 0.153 78.9

MEMER (Visual + Text) 0.685 0.019 70.9 0.876 0.107 102.8 0.778 0.139 87.4 0.768 0.148 86.3

(3) Tag average, 𝑋𝑠𝑖𝑔𝑛𝑎𝑙
𝑡𝑎𝑔 = (∑𝑁𝑡𝑎𝑔 𝑥

𝑠𝑖𝑔𝑛𝑎𝑙
𝑡𝑎𝑔 )/𝑁𝑡𝑎𝑔 which is the

average of post embeddings within a particular tag.
We evaluate performance of the embeddings using AUC score and
F1 score. Since we have taken test posts which have sufficient in-
teractions, we also compare the performance of our early stage
embeddings with matured embeddings using RelaImpr (RI) [18]
𝐴𝑈𝐶 (𝑚𝑜𝑑𝑒𝑙 )−0.5

𝐴𝑈𝐶 (𝑚𝑎𝑡𝑢𝑟𝑒𝑑 )−0.5 ∗ 100%. This gives an indication of the similarity
of the predicted embeddings with respect to the matured embed-
dings.

3.1.3 Results and Analysis. The offline results in Table 2 shows
that MEMER is outperforming the other initialisation approaches
by a significant margin. The AUC is better compared to others both
in explicit and implicit signals. Additionally, we have performed
ablative experiments for videos to prove the effectiveness of each
component of the semantic module. The results demonstrate that
MEMER (visual and audio features) does better than MEMER (only
visual features) across all metrics, underlining the importance of
incorporating an additional modality to the semantic module. Fur-
thermore, to gauge the generalizability of our proposed approach,
we have conducted experiments on two different datasets that use
different types of multimodal features. Our model achieves signifi-
cantly better results in both of them, highlighting the robustness
and general usability of MEMER.
Comparison with matured embeddings: The gains in RI sug-
gests that MEMER is able to come closest compared to others when
the performance is compared against the matured embeddings. This
also indicates that the initialisation is happening much closer to
the convergence point leading to comparable performance even
with no behavioral feedback.

3.1.4 Implementation Details. The embedding size of user and
item embeddings has been fixed to 32. Learning rate is set to 0.001.
Training is done using Adam optimizer with shuffled mini-batches
of size 16384. We use PyTorch for all the training and experiments
and is done on Tesla T4 GPUs.

3.2 Online
3.2.1 Experiment Setup. The experiment was setup as an AB test
where the control set of users were shown new content using the
tag-based approach and the test set was shown new content where
the embeddings were initialised by MEMER predictions. Both the

Table 3: Online Results

User Metrics Control (Tag Avg) Test (MEMER) Relative Gain (%)

VIDEO

CTR 0.0459 0.0613 43.90
Engagements/Views 0.0099 0.0145 46.14
Successful Video Play 0.2633 0.2871 9.07

Skips 0.1583 0.1255 -20.75
Interactions/Views 0.0220 0.0334 52.07

IMAGE Engagements/Views 0.0291 0.0454 56.33

experiment groups had around 150k users. A dot product between
user embedding and content embedding was taken to generate
recommendation. The list was sorted by scores and the topK content
was shown to the users.

3.2.2 Results & Analysis. The online results in Table 3 suggest that
the explicit actions including likes, shares, favorites (save to gallery),
engagement (likes+shares+favorites) and CTR (click through ratio)
is better than control by ~50%. We also observe significant gains in
implicit user feedback signals including skips (20% lesser compared
to control) and successful video watch (9% better compared to
control). Both the implicit actions are mapped to a binary outcome
on the basis of video watch time and duration of the video.

Figure 3: Online Results across Genres

Figure 3 shows that the online gains we observe with MEMER
cannot be attributed to better performance in a specific category.
For eg. One can come up with an approach that performs extremely
well for an engagement heavy category like "Wishes" and the overall
numbers for this approach could be better than the control variant.
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But it fails the objective of providing a fair ground to all content by
preferentially treating one category over the others. A tag-based
approach leverages user’s current preferences for targeting and is
over-indexed on popularity. Compared to this, MEMER is learning
the embeddings at an item level and then using it to map it to the
right set of users. This ensures that even for a niche category the
approach is able to find the interested users within the category
better.

4 CONCLUSION
In conclusion, we propose a novel solution, MEMER, to tackle the
problem of generating high-quality embeddings for early-stage
content. Our framework effectively utilizes the multimodal seman-
tic information of content to generate embeddings that perform
significantly better in offline and online experiments compared to
conventional methods. The offline experiments also demonstrate
the effectiveness of our approach in generating better-quality em-
beddings. Our framework’s flexibility allows us to extend it to dif-
ferent media formats and various explicit and implicit user actions,
further improving the quality of generated embeddings. Our re-
sults demonstrate the potential of MEMER to significantly improve
user engagement and content shelf-life in large-scale recommender
systems.

5 LIMITATIONS & FUTUREWORK
The limitations of the MEMER model are primarily due to its re-
liance on the quality of embeddings generated by the underlying
algorithm. The use of historical data and base model embeddings for
training can limit the model’s effectiveness. To improve the model’s
performance, future work could focus on adding features such as
creator and location information, as well as more detailed content
data. SOTA feature fusion techniques could also be employed for
model enhancement. Additionally, online training of the base model
could lead to improved performance in both early and later stages
of content recommendation. Architectural improvements, such as
the use of noise aware losses, could be employed to address the
issue of noise and biases in the underlying model and reduce direct
dependency.
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