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ABSTRACT 

Machine Learning algorithms are often as good as the data they 

can learn from. Enormous amount of unlabeled data is readily 

available and the ability to efficiently use such amount of 

unlabeled data holds a significant promise in terms of increasing 

the performance of various learning tasks. We consider the task of 

supervised Domain Adaptation and present a Self-Taught learning 

based framework which makes use of the K-SVD algorithm for 

learning sparse representation of data in an unsupervised manner. 

To the best of our knowledge this is the first work that integrates 

K-SVD algorithm into the self-taught learning framework. The K-

SVD algorithm iteratively alternates between sparse coding of the 

instances based on the current dictionary and a process of 

updating/adapting the dictionary to better fit the data so as to 

achieve a sparse representation under strict sparsity constraints. 

Using the learnt dictionary, a rich feature representation of the 

few labeled instances is obtained which is fed to a classifier along 

with class labels to build the model. We evaluate our framework 

on the task of domain adaptation for sentiment classification. Both 

self-domain (requiring very few domain-specific training 

instances) and cross-domain classification (requiring 0 labeled 

instances of target domain and very few labeled instances of 

source domain) are performed. Empirical comparisons  of self-

domain and cross-domain results establish the efficacy of the 

proposed framework.  
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1. INTRODUCTION 
Machine Learning algorithms are often as good as the data they 

can learn from. The expense involved and the difficulty of 

obtaining labeled data poses a severe bottleneck in the 

applicability of several machine learning algorithms for 

classification tasks. Enormous amount of unlabeled data is readily 

available and thus the ability to use such amount of unlabeled data 

holds significant promise in terms of increasing the performance 

of various learning tasks.  

Raina et al[3] proposed a new machine learning framework called 

Self-Taught Learning for using unlabeled data in supervised 

classification task. Self-Taught Learning requires that the 

structure learned from unlabeled data be ―useful‖ for representing 

data from the classification task. Specifically considering the case 

of sentiment classification of reviews and domain adaptation, a 

large amount of labeled instances in each of the domains are 

required to achieve a reasonable classification accuracy. If 

automatic sentiment classification were to be used across a wide 

range of domains, the effort to annotate corpora for each domain 

may become cumbersome. Learning a different system for each of 

the domain would prevent us from exploiting the information 

shared across domains.  

A better strategy could be to learn a single system from the set of 

domains for which labeled and unlabeled data are available and 

then apply it to any target domain. For this strategy to succeed the 

system should be able to discover intermediate abstractions that 

are shared and meaningful across domains. Other challenges faced 

while performing classification tasks include the problem of high 

dimensionality of observed data:  an excessively large number of 

data features which hinder the model-building process and the 

inability to represent data (signals, images, etc.) in the most 

parsimonious terms. Models that propose that the signal of interest 

is sparse in some transform domain are preferred. 

We feel that the intermediate abstractions learnt by the dictionary 

could yield a better transfer across domains. Some of the customer 

sentiments on product quality, product servicing, etc. make sense 

across a wide range of domains. Since the same words or tuples of 

words may be used across domains to indicate the presence of 

these higher-level concepts, it should be possible to discover 

them. 

In this paper we present a framework which proposes solution to 

the above mentioned problems. We use the K-SVD algorithm 

(Aharon et al[2]) to learn a dictionary based sparse representation 

using unlabeled reviews spanning multiple domains. Given a set 

of unlabeled instances, we seek the dictionary that leads to the 

best representation for each member in this set, under strict 

sparsity constraints. We then learn the representation of few 

labeled instances based on the obtained dictionary and feed it to a 

classifier. The K-SVD algorithm makes use of unlabeled instances 

to learn a representation that models intermediate abstractions 

across the domains thereby fulfilling the objective of Self-Taught 

Learning while at the same time solving the problem of high 

dimensionality by keeping a check on the number of dictionary 

elements to train. We evaluate our framework on a standard 

Amazon review dataset created by Blitzer et al [1]. 

2. SPARSE  REPRESENTATION 
Sparse and redundant representation modeling of data assumes an 

ability to describe signals (y∈  ) as linear combinations of a few 

atoms {      
  from a pre-specified dictionary. As such, the 
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choice of the dictionary that sparsifies the signals is crucial for the 

success of this model. Representing a signal involves the choice 

of a dictionary, which is the set of elementary signals or atoms 

used to decompose the signal. When the dictionary forms a basis, 

every signal is uniquely represented as the linear combination of 

the dictionary atoms.       

2.1 Sparse Coding and Dictionary Training 
Sparse coding is the process of computing the representation 

coefficients x based on the given signal y and the dictionary D. 

This process, commonly referred to as ―atom decomposition,‖ 

requires solving: 

    ‖ ‖   subject to  y = Dx                   (1) 

or 

    ‖ ‖   subject to  ||y-Dx|    ϵ         (2) 

where ‖.‖o  is the 1o  norm, counting the nonzero entries of a 

vector; and this is typically done by a ―pursuit algorithm‖ that 

finds an approximate solution.  

Sparse Coding is a necessary stage in the K-SVD algorithm we 

describe later. Exact determination of the sparsest representation 

is an NP hard problem and thus various approximate solutions 

have been proposed. The simplest ones are the matching pursuit 

(MP)[5] and the orthogonal matching pursuit (OMP) 

algorithms[6][7].  

Dictionary training is a much more recent approach to dictionary 

design, and as such, has been strongly influenced by the latest 

advances in sparse representation theory and algorithms. The most 

recent training methods focus on L0 and L1 sparsity measures, 

which lead to simple formulations and enable the use of recently 

developed efficient sparse-coding techniques[8][9]. We next 

describe the KSVD algorithm (as proposed by [3]) used for 

learning adaptive dictionaries. 

2.2 K-SVD Algorithm 
Given a set of examples Y, the goal of the K-SVD is to find a 

dictionary D and a sparse matrix X which minimize the 

representation error, 

𝒂𝒓𝒈   
𝑫,𝑿 

‖𝒀 − 𝑫 ‖𝑭
  subject to ‖𝜸

 
‖

 

 
  𝑻   ∀  

where 𝜸
 
 represent the columns of X, and the L0 sparsity 

measure; ‖. ‖ 
 counts the number of non-zeros in the 

representation. The K-SVD algorithm alternates between sparse-

coding and dictionary update steps.  

Sparse coding is performed for each signal individually using any 

standard technique. The objective function is  

min ‖𝒀 − 𝑫𝑿‖𝑭
 

𝐃,𝐗  subject to ∀  , ‖  ‖   𝑻  

The penalty term can be written as: 

 ‖𝒀 − 𝑫𝑿‖𝑭
   =  ∑ ‖𝒀 − 𝑫  ‖ 

 𝑵
 =𝟏      -(3) 

Thus the objective function can further be decomposed to N 

distinct problems of the form:  

     ‖  − 𝑫  ‖ 
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This problem is adequately addressed by the pursuit algorithms 

discussed above. For the part of dictionary updating, only 1 

column of the dictionary and the corresponding row in X is 

questioned, thereby re-writing the penalty term: 
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Defining    as the group of indices pointing to the examples      

that use the atom    i.e. those where   
  is zero.    is defined as 

the matrix of size 𝑵        with ones on the   
 
   ,      

position and zeroes elsewhere.  

When multiplying 𝑿 
 = 𝑿𝑻

    , this shrinks the row vector by 

discarding of the zero entries, resulting with the row vector of 

length     . Thus the equation (4) becomes:  

‖    −   𝑿𝑻
   ‖𝑭

 = ‖  
 −   𝑿 

 ‖𝑭
  

and SVD can be used to find the final solution. For details the 

reader is directed to [3].  

We use the K-SVD algorithm to train a dictionary based on all the 

unlabeled instances of all the domains and get their corresponding 

co-efficient matrix using OMP. Henceforth we use the rows of the 

representation matrix X as our feature vectors. 

3. SUPERVISED DOMAIN ADAPTATION 
Domain adaptation considers the setting in which the training and 

testing data are sampled from different distributions. Assume we 

have two sets of data: a source domain S providing labeled 

training instances and a target domain T providing instances on 

which the classifier is meant to be deployed. We do not make the 

assumption that these are drawn from the same distribution, but 

rather that S is drawn from a distribution    and T from a 

distribution   . The learning problem consists in finding a 

function realizing a good transfer from S to T. 

We consider the case of supervised Domain Adaptation, a setting 

where we have a large amount of labeled data from some source 

domain, a large amount of unlabeled data from a target domain, 

and additionally a small budget for acquiring labels in the target 

domain. In our setting we experimented on 3 different values of 

the fixed budget (5%, 10% & 20%) of the total unlabeled 

instances we had initially in the self-domain. The instances which 

constitute those percentages were randomly selected and the 

labels for those instances were acquired from the oracle. 



Table 1 : Self-Domain Sentiment Classification 

 

4. EXPERIMENTAL ANALYSIS 

4.1 Dataset Description 
Our data was based on the one used by [2]. They used the dataset 

consisting of product reviews for 4 items – books, DVDs, 

electronics and kitchenware. The raw dataset was taken from 

Amazon and consisted of product name, reviewer name, ratings 

(on a scale of 0-5), rating date and title followed by review text. 

The ratings were made binary (ratings>3 were written as 1 and 

rest were made 0) for practical purposes. The review text was in 

the form of frequencies of various words appearing in the text. 

The remaining attributes were discarded, as they were found to be 

too ambiguous. We took the same dataset for our practical 

experiments (the dataset had 1000 positive and 1000 negative 

reviews). The nature of our experiments required unsupervised 

training examples and hence, for each of the 4 items, 1000 labeled 

(500 positive and 500 negative) reviews were separated out for 

testing purposes and the rest (totaling 4000) with labels discarded, 

were used for setting up the dictionary. The same dictionary was 

used for modeling a sentiment predictor for each of the 4 domains 

(the domains here being the items) as well as for domain transfer 

between them (the model building aspect is explained at a later 

stage). 

4.2 Experimental Setup 
The basic preprocessing step was the one used by [2] in which the 

bag-of-words representation with frequency of each word was 

converted to a simple word presence/absence format. For 

computational reasons, only the most 5000 frequent unigrams and 

bigrams were shortlisted for further computations 

4.3 Sentiment Classification & Domain 

Transfer (Self-Domain & Cross-Domain) 
The experiments were conducted in the following steps : 

Unsupervised Dictionary Learning 
The first step was to come up with the dictionary representation 

using the 4000 unlabeled instances. By setting the appropriate 

parameters, the size of dictionary representation (the number of 

attributes in terms of which data instance can be represented) was 

kept at 50 (thus achieving dimensionality reduction from 5000 to 

50). We came up with the dictionary by iteratively running the  

 

 

 

code till the error threshold was reached. To achieve sparse 

representation, the no, of coefficients to use in OMP coefficient 

calculation was empirically kept as 5. 

Sparse  Coding 
The second step was to train the data for a particular domain. The 

remaining 4000 instances (1000 labeled ones from each of the 

domains, after removing their labels) were represented in terms of 

the dictionary achieved in the step 1 using OMP coefficient 

calculations. 

Self-domain  Sentiment  Classification 
The coefficient matrices obtained by the sparse coding stage were 

divided into training and testing sets of various sizes. In this 

paper, we show the results for training on 50,100 and 200 

instances respectively (corresponding to 5%, 10% and 20% 

respectively in tables and figures) and testing on the remaining 

ones (from the 1000 labeled ones). The dictionary learned from 

unsupervised learning allowed training on so few samples to 

achieve reasonably satisfactory results. The algorithms used were 

Voted Perceptron, Logistic Regression and Bayesian Logistic 

Regression algorithms.  The results are enumerated in Table 1. 

Domain Transfer: Budgeted  Domain  Adaptation 
The second objective of our method was to enable cross-domain 

training to allow a single model to be applied in other domains as 

well. This is accomplished by training on one of the domains and 

testing on the remaining 3 domains using the same 3 algorithms 

mentioned earlier. The results are enumerated in Table 2. 

Table 2 : Domain Transfer Results 

 

The next section provides a brief analysis of the results. 

Domain  Books DVD Electronics Kitchenware 

        % dataset used 

for training 

Learning 

Algorithm 

5 10 20 5 10 20 5 10 20 5 10 20 

Voted Perceptron 63.3 66.8 72.7 48.9 54.7 53.3 72.7 69.6 79.7 64 72.6 79.4 

Logistic Regression 73.8 74.4 77.8 53.1 58.3 59.6 74.8 71.1 76.3 75.4 83.2 85.1 

Bayesian Logistic 70.9 75.5 81.7 51.8 59.1 59.0 73.7 83.2 84.6 75.8 85.4 88.3 

                  Test 

               Domain 

Train 

Domain 

Books DVDs Electronics Kitchenware 

Books - 63.4 87.9 89.8 

DVDs 82.7 - 83.1 85.7 

Electronics 82.7 69.5 - 90.92 

Kitchenware 85.7 63.3 90.3 - 



5. CONCLUSION 
Below are a few points summarizing the results achieved and how 

they stack up against our initial aims. 

1.As visible, the results of self-domain training in case of minimal 

labeled examples is comparable to that of cross-domain training, 

thus fulfilling the initial aims of the algorithm. 

2. The results also show that as theorized, building representations 

from multiple sources tends to trap some higher level and more 

abstract patterns and structures in data as well. This accounts for 

the results achieved in both Table 1 and Table 2. 

3. Like in the case of [18] , the quality of our features obtained 

allow such a cross-domain accuracy but unlike in their case, we 

achieved these results without using any kind of hierarchical or 

multi-layer k-SVD algorithm (they had used stacked Denoising 

auto-encoder). In addition we also achieved a dimension reduction 

from 5000 attributes to mere 50 attributes along with a sparse 

representation (the no, of coefficients to use in OMP coefficient 

calculation was kept as 5 ) . Also, they had used 80% ie 1600 

samples for training purpose, much higher than our own. 

4. The results for cross-domain were achieved without any prior 

knowledge about the source and target domains. Important 

observation in case of cross-domain results is that the domains are 

not necessarily significantly related to each other (like 

kitchenware and books, for example). But our dictionary manages 

to achieve commendable results in-spite of this. 

5. Further improvements in results for practical purposes is further 

possible by implementing an hierarchical version of the K-SVD 

algorithm. Another aspect is that for building up the dictionary, 

unlabeled reviews from more varied domains could be taken for a 

better representation. 

One important factor to note is that apart from the algorithmic 

difference from the previous approaches, the key difference in our 

framework is that in coherence to the Self-Taught Learning 

principle, we learn sparse representation using unlabeled instances 

from all four domains. We believe that such accuracies for 

domain transfer are achieved due to the rich representation learnt 

to represent reviews in our algorithm. 
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