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ABSTRACT

The performance of Learning to Rank algorithms strongly
depend on the number of labelled queries in the training
set, while the cost incurred in annotating a large number
of queries with relevance judgements is prohibitively high.
As a result, constructing such a training dataset involves se-
lecting a set of candidate queries for labelling. In this work,
we investigate query selection strategies for learning to rank
aimed at actively selecting unlabelled queries to be labelled
so as to minimize the data annotation cost. In particular,
we characterize query selection based on two aspects of in-
formativeness and representativeness and propose two novel
query selection strategies (i) Permutation Probability based
query selection and (ii) Topic Model based query selection
which capture the two aspects, respectively. We further ar-
gue that an ideal query selection strategy should take into
account both these aspects and as our final contribution, we
present a submodular objective that couples both these as-
pects while selecting query subsets. We evaluate the quality
of the proposed strategies on three real world learning to
rank datasets and show that the proposed query selection
methods results in significant performance gains compared
to the existing state-of-the-art approaches.

Categories and Subject Descriptors

H.3.3 [Information Storage And Retrieval]: Informa-
tion Search and Retrieval—Learning to Rank

Keywords

Learning to Rank, Query Selection, Active Learning, Sub-
modularity

1. INTRODUCTION

Most modern search technologies are based on machine
learning algorithms that learn to rank documents given a
query, an approach that is commonly referred to as ”learning
to rank”. Learning to Rank algorithms aim to learn ranking
functions that achieve good ranking objectives on test data.
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Such learning methods require labelled data for training.
As is the case with many supervised learning algorithms,
the performance of Learning to Rank algorithms are often
highly correlated with the amount of labelled training data
available[1][17][7].

Constructing such labelled training data for learning-to-
rank tasks incurs prohibitive costs since it requires selecting
candidate queries, extracting features from query-document
pairs and annotating documents in terms of their relevance
to these queries (annotations are used as labels for train-
ing). The major bottleneck in constructing learning-to-rank
collections is annotating documents with query specific rele-
vance grades. It is essential therefore, both for the efficiency
of the construction methodology and for the efficiency of
the training algorithm, that only a small subset of queries
be selected. The query selection, though, should be done in
a way that does not harm the effectiveness of learning.

Active Learning algorithms help reduce the annotation
costs by selecting a subset of informative instances to be la-
belled. Unlike traditional algorithms, active learning strate-
gies for ranking algorithms are more complex because of the
inherent query-document pair structure embodied in rank-
ing datasets, non-smooth cost functions, etc., hence these
cannot be applied directly in ranking setting.

Existing approaches for active learning for ranking have
focused on selecting documents [1], selecting queries [17] or
balancing number of queries with depth of documents judged
using random query selection [27].

In this work, we focus on selecting subset of queries to be
labelled so as to minimize the data annotation cost. Prior
work on selecting queries made use of expected loss opti-
mization [17] to estimate which queries should be selected
but their approach is limited to rankers that predict abso-
lute graded relevance which is not the case with modern
Learning to Rank algorithms since many of them induce a
ranking and not absolute labels [4]. Apart from the learning
to rank setting, query selection has also received significant
attention for evaluation setting [13] wherein the goal was to
find a subset of queries that most closely approximates the
system evaluation results that would be obtained if instead
documents for the full set of queries was judged instead.
However, it was shown by Aslam et a.l[1] that learning to
rank and evaluation of retrieval systems are quite different
from each other and that datasets constructed for evaluat-
ing quality of retrieval systems are not necessarily good for
training and vice versa. Therefore, query selection strategies
that are directly devised for learning to rank purposes are
needed.



Intuitively, an optimal subset of queries constructed for
learning to rank should have two characteristics: (i) in-
formativeness, which measures the ability of an instance
(query) in reducing the uncertainty of a statistical model
(ranking model) and (ii) representativeness, which measures
if an instance (query) well represents the possible input pat-
terns of unlabelled data (unlabelled queries) [22]. Most ex-
isting active learning for ranking algorithms solely focus on
the informativeness aspect of queries without considering
the representativeness aspect which can lead to possible se-
lection of noisy queries, not quite representative of the whole
population of queries; thus, significantly limiting the perfor-
mance of query selection.

In this work, we focus on query selection strategies for
learning to rank and propose novel query selection algo-
rithms aimed at finding an optimal subset of queries to be
labelled. Since problems associated with subset selection are
generally NP-Hard or NP-Complete[12], we approximate the
solution by an iterative query selection process so as to min-
imize the data annotation cost without severely degrading
the performance of the ranking model.

We describe two paradigms of query selection strategies
based on the aspects of informativeness and representative-
ness described above and propose novel query selection tech-
niques: Permutation Probability based query selection and
query selection based on topic models which capture these
two aspects, respectively. We further present a new algo-
rithm based on defining a submodular objective that com-
bines the powers of the two paradigms. Submodular func-
tions have the characteristic of diminishing returns [19], which
is an important attribute of any query-subset selection tech-
nique since the value-addition from individual queries should
ideally decrease as more and more queries are selected. Thus,
not only are submodular functions natural for query subset
selection, they can also be optimized efficiently and scalably
such that the result has mathematical performance guaran-
tees.

We show that our proposed algorithms result in signifi-
cant improvements compared to state-of-the-art query selec-
tion algorithms thereby helping in reducing data annotation
costs.

2. RELATED WORK

Active Learning for Labelling Cost Reduction:

A number of active learning strategies have been proposed
for the traditional supervised learning setting, a common
one being uncertainty sampling which selects the unlabelled
example about which the model is most uncertain how to
label. Some of the others adopt the idea of reducing the
generalization error and select the unlabelled example that
has the highest effect on the test error, i.e. points in the
maximally uncertain and highly dense regions of the under-
lying data distribution[9]. A comprehensive active learning
survey can be found in [22].

Reducing judgment effort for learning to rank has received
significant amount of attention from the research commu-
nity. Learning to rank methods are quite different than
approaches used for classification as they require optimiz-
ing nonsmooth cost functions such as NDCG and AP [24].
Moreover, owing to the unique query-document structure
which inherent to the learning to rank setting, it is not
straightforward to extend the models devised for traditional
supervised learning settings to ranking problems. In recent

years, active learning has been actively extended to rank
learning and can be classified into two classes of approaches:
document level and query level active learning.

Document Selection for Learning to Rank:

Based on uncertainty sampling, Yu et al[28] selected the
most ambiguous document pairs, in which two documents
received close scores predicted by the current model, as in-
formative examples. Donmez et al.[8] chose those document
pairs, which if labelled could change the current model pa-
rameters significantly. Silva et al [23] proposed a novel doc-
ument level active sampling algorithm based on association
rules, which does not rely on any initial training seed.

Query Selection for Learning to Rank:

For query level active learning, Yilmaz et al. [27] empir-
ically showed that having more queries but shallow docu-
ments performed better than having less queries but deep
documents. They balance number of queries with depth of
documents judged using random query selection. Cai et al.
[5] propose the use of Query-By-Committee (QBC) based
method to select queries for ranking adaptation but omit the
evaluation of the query selection part and focussed on the
ranking adaptation results instead. Long et al. [17] intro-
duced an expected loss optimization (ELO) framework for
ranking, where the selection of query and documents were
integrated in a principled 2 staged active learning frame-
work and most informative queries selected by optimizing
the expected DCG loss but the proposed approach is lim-
ited to rankers that predict absolute graded relevance and
hence not generalizable to all rankers. Authors in [2] adapt
ELO to work with any ranker by introducing a calibration
phase where a classification model is trained over in the val-
idation data. Moreover, they show that estimating expected
loss in DCG is more robust than NDCG even when the final
performance measure is NDCG.

Thus, QBC attempts to capture the informativeness as-
pect of queries by selecting queries which minimize the dis-
agreement among a committee of rankers while the Expected
loss optimization based approach formulates informativeness
in terms of expected DCG loss; both these approaches fail
to capture the representativeness aspect of queries which we
show outperforms both these approaches.

Submodular Maximization:

Submodularity is a property of set functions with deep the-
oretical and practical consequences. Submodular maximiza-
tion generalizes to many well-known problems, e.g., maxi-
mum weighted matching, max coverage, and finds numerous
applications in machine learning and social networks. In In-
formation Retrieval, submodular objectives have been ma-
jorly employed for diversified retrieval[29] & learning from
implicit feedback[21]. A seminal result of Nemhauser et al.
[19] states that a simple greedy algorithm, based on a sub-
modular objective, produces solutions competitive with the
optimal (intractable) solution. In fact, if assuming nothing
but submodularity, no efficient algorithm produces better
solutions in general [10].

3. QUERY SELECTION STRATEGIES

Our aim is to actively select the optimal subset of unla-
belled queries for obtaining relevance judgements so as to re-
duce data annotation costs. Intuitively, the selected queries



should have two major properties: informativeness & repre-
sentativeness. We describe both these properties below and
provide intuitions motivating each.

3.1 Informativeness

Informativeness measures the ability of an instance in re-
ducing the uncertainty of a statistical model[22]. Ideally,
the selected queries should be maximally informative to the
ranking model. In learning to rank setting, Informativeness
based query selection focusses on greedily selecting queries
which are most informative to the current version of the
ranking model.

Different notions of informativeness can be encapsulated
by different techniques depending on how query-level infor-
mativeness is quantified. Two possible measures of captur-
ing a query’s informativeness include: (i) Uncertainty based
informativeness & (ii) Disagreement based informativeness.

Uncertainty based informativeness quantifies the query-
level information as the uncertainty associated with the opti-
mal document ranking order for that query. Query selection
strategies focusing on uncertainty reduction would greedily
select the query instance about which the current ranking
model is most uncertain about, thereby trying to reduce the
overall uncertainty associated with the ranking model.

Disagreement based informativeness, on the other hand,
quantifies the query-level informativeness as the disagree-
ment in this query’s document rankings among a committee
of ranking models. The key idea here is that the maxi-
mally informative query is one about whose document rank-
ings, the committee of ranking models maximally disagree;
hence obtaining relevance labels for such a query would pro-
vide the maximum information. Among the existing ap-
proaches for query selection for ranking models, the Query-
by-Committee [5] attempts to capture the Informativeness
aspect of queries based on a disagreement measure.

3.2 Representativeness

Representativeness measures if an instance well represents
the overall input patterns of unlabelled data [22]. Web
search queries can span a multitude of topics and informa-
tion needs, with even a small dataset containing a broad set
of queries ranging from simple navigational queries to very
specific domain-dependent queries. In learning to rank set-
tings, this implies that selected queries should have strong
correlation with the remaining queries, as without this cor-
relation there is no generalizability and predictive capability.
Different notions of representativeness can be defined cover-
ing different characteristics of individual queries. Improving
the representativeness of the selected query subset improves
the coverage aspect of the query collection - the more repre-
sentative selected queries are, the more they cover the entire
query collection.

3.3 Informativeness vs Representativeness

Selecting queries solely based on their informativeness as-
pects could possibly lead to selection of noisy queries. In
line with the Meta-Search Hypothesis [14][15], rankers tend
to agree on relevant documents and disagree about nonrele-
vant docs. Hence, the queries that a ranker is unsure about
or there is big disagreements across rankers are likely to be
the ones that contain a lot of nonrelevant documents. Such
noisy, outlier queries which majorly have non-relevant docu-
ments would lead to maximal disagreement and uncertainty

among ranking models, and thus would be wrongly labelled
maximally informative. Also, the set of informative queries
might not necessarily represent the set of all possible queries,
which lead to less coverage of the unlabelled query set.

On the other hand, selecting queries based on representa-
tiveness aspects could lead to the selection of a query that
is very similar to the a query already in the labelled set and
hence, does not provide much information to the ranking
model. Despite being representative, such queries possibly
offer redundant information to the ranking models. Ideally,
a query selection algorithm should take into account both
these aspects while selecting queries. Existing work has ma-
jorly looked into selecting queries by considering informa-
tiveness based on disagreement among rankers (Query-by-
Committee) or informativeness in terms of expected DCG
loss (Expected loss optimization). Both these approaches
fail to capture the representativeness aspect of queries. In
addition to a novel informativeness approach based on un-
certainty reduction, we present a representativeness based
approach and finally couple both these aspects for query
selection via a joint submodular objective which jointly in-
corporates informativeness & representativeness.

As our first contribution, we present a novel informative-
ness based query selection scheme (§ 4) based on permuta-
tion probabilities of document rankings which tries to reduce
uncertainty among rankers. While no existing query selec-
tion scheme for learning to rank incorporates the represen-
tativeness aspect of queries, we propose a LDA topic model
based query selection scheme (§ 5) which captures the rep-
resentative aspect of queries while constructing the query
subset. An ideal query subset would have both informa-
tive & representative queries. As our third contribution, we
combine the two paradigms of representativeness & informa-
tiveness by proposing a coupled model based on submodular
functions(§ 6).

4. CAPTURING INFORMATIVENESS VIA
PERMUTATION PROBABILITIES

Our first novel query selection scheme is aimed at cap-
turing the informative-aspect of queries. We maintain a
committee of ranking models C' = {6',6?,...,6°} which are
trained on a randomly selected subset from the current la-
belled set, and thus contain different aspects of the training
data depending on the queries in their subset. It is to be
noted that these ranking models could be generated using
any learning to rank algorithm. Given the set of currently
labelled query instances, our goal is to pick the next query
(¢") from the set of unlabelled queries by selecting the max-
imally informative query instance. The query-level infor-
mativeness is defined in terms of the uncertainty associated
with the optimal document ranking orders among the |C|
ranking models. We follow a similar approach as outlined
by Cai et al.[5] to maintain a committee of rankers. However,
unlike Query-By-Committee [5] which encapsulates infor-
mativeness via ranker disagreements, our approach presents
an alternate view of informativeness based on uncertainty
reduction wherein a ranking model’s uncertainty for the
query’s document ranking order is defined based on the con-
cept of permutation probabilities.

More specifically, each committee ranking model is al-
lowed to score the documents associated with each query fol-
lowing which a permutation probability is calculated on the



ranking obtained on sorting these document scores. Thus,
each query gets a permutation probability score by each
committee member. The most informative query is consid-
ered to be the query instance which minimizes the maximum
permutation probability of document scores given by each
ranking model committee member.

We postulate that a query which has the minimum per-
mutation probability score from among the maximum scores
assigned between the different ranking models is maximally
informative in the sense that even the best ranker among the
committee is highly uncertain about its document rankings
and hence this query obtained the least permutation prob-
ability score among the set of unlabelled candidate queries.
We select a query for which the probability with respect to
the most certain (maximum permutation probability) model
is minimal, i.e., a query for which even the most certain com-
mittee member has minimum confidence.

To define permutation probabilities, we make use of the
Plackett-Luce model [20]. The Plackett-Luce (P-L) model is
a distribution over rankings of items (documents) which is
described in terms of the associated ordering of these items
(documents). We define P(7|v) as the probability of obtain-
ing the ranking order () based on the score (vy) assigned
to each document (k) by the ranking model learnt thus far.
For each query, we rank the documents based on the scores
assigned by model learnt so far and calculate the probabil-
ity of the ranking order obtained (7) using the permutation
probability defined as follows:

Vw;
P(rjv)= ] ———— 1
=1k Ui + o Vg (1)

where each ranking 7 has an associated ordering of docu-
ment scores w = (w1, - ,wk) and an ordering is defined
as a permutation the K document indices with v, repre-
senting the score assigned to document i (at rank w;) by
the ranking model. We make use of a committee of ranking
models and select the maximally informative query based on
a greedy min-max algorithm described next.

4.1 Min-Max PL Probability Algorithm

Building a Min-Max PL Probability based selection sys-
tem involves two components: (i) building a committee of
ranking models that are well diversified and compatible with
the currently labelled data and (ii) computing permutation
probabilities by each committee member for each query in
the unlabelled set of queries & selecting maximally informa-
tive query as per the min-max score.

Committee Construction:

Following the work of [5], we use query-by-bagging approach
to construct the members. Given the set of currently la-
belled instances, bagging generates C' partitions of sub sam-
ples by sampling uniformly with replacement, and then the
committee can be constructed by training each of its mem-
bers on one portion of the sub-sample partitions. We ran-
domly initialize the initial set of labelled queries with a
small base set of queries and their labelled documents. We
sample with replacement for C' times in the set of labelled
queries and train a ranking model on each subset of queries.
Such a sampling procedure allows us to create various dif-
ferent training datasets that each represent a subset of the
data possibly having very different characteristics than each
other. These C' models represents our C' committee mem-

bers. We set the size of each subset to be 50 % of the current
labelled subset size at each step. The maximally informative
query ¢~ is selected for annotation which obtains the lowest
min-max score, the calculation of which is described below.

Calculating min-max score:

For each query ¢ in the candidate set of unlabelled queries,
the C' committee members return C ranked lists. Following
the construction of |C| ranking models, for each ranking
model per query, we sort the documents based on the scores
given by the ranking model and compute the permutation
probability of obtaining this ranking order.

Thus, each query has |C| permutation probability scores.
In order to minimize the overall uncertainty associated with
the ranking models, we select the maximally informative
query ¢*, i.e., the query that has the minimum value of the
permutation probability assigned by its most certain com-
mittee member, i.e., the committee member that has the
highest permutation probability score associated with the
query’s document ranking order. Thus,

q = argmingep,, [mawceC{P(Wg|U;)

c
£ T o
c c
k=1,...,K VG, BRI

(2)

where each ranking 77 has an associated ordering w =

(wf, -+ ,w%) and an ordering is defined as a permutation the
K document indices with vg,, representing the score assigned
to document k by the ranking model c.

5. CAPTURING REPRESENTATIVENESS
VIA LDA TOPICS

A major drawback associated with pure-Informativeness
based models is that often they tend to select outlier queries.
As is confirmed by the Meta-Search Hypothesis [14][15],
rankers tend to agree on relevant documents but disagree
on non-relevant documents. In such a scenario, an outlier
query which majorly has non-relevant documents would lead
to maximal disagreement and uncertainty in the ranking
model, and thus will be wrongly labelled maximally infor-
mative. This motivates the need for considering the repre-
sentativeness aspect of queries.

The information-seeking behaviour of users tend to vary
based on the search task at hand [25] which suggests that
the importance of feature weights for queries belonging to
different tasks or topics are likely to be very different. The
relative importance of different features are likely to be very
different for different tasks. For example, queries belonging
to a topic such as news would warrant high authority web-
sites to be ranked higher (i.e., larger weight on the pagerank
score) while queries belonging to (say) educational informa-
tional content would prefer the documents better matched
with their query terms be ranked higher (i.e., larger weight
on the relevance features such as BM25). To capture these
diverse variations in the feature weights, the training set
should ideally be composed of representative queries from
different tasks. This makes it necessary that the labelled set
of queries have representative queries spanning the entire



array of different topics. We propose a Latent Dirichlet Al-
location (LDA) [3] topic model based query selection scheme
which tries to capture this insight by selecting representa-
tive queries which are most topically similar to the set of
unlabelled queries.

Based on this intuition, we conjecture that representative
queries would be those that are most similar to the set of
unlabelled queries in terms of their topical distribution. To
capture the heterogeneity among all queries in the search
logs, we make use of the concept of latent topics. We learn
these latent topics from the collection of queries and repre-
sent each query as a probability distribution over these latent
topics. We train an LDA model, a generative model which
posits that each document (query in our case) is a mixture of
a small number of topics and that each word’s (query term’s)
creation is attributable to one of the document’s (query’s)
topics. Each query is represented as a feature vector corre-
sponding to its distribution over the LDA topics. To find
representative queries, we select the query with the maxi-
mum average similarity from among the unlabelled set of
queries, i.e.,

. 1 )
q = argmaxqm Z sim(Tq, Ty,) ®3)
u

qi €Dy

where |D,| represents the number of queries in the unla-
belled set D, ; T, represents the query ¢’s feature vector in
the LDA topic space and sim(Ty, T,,) can be any similarity
score between queries; we use the cosine similarity between
the topic-space representations of queries ¢ and g;.

6. COMBINING REPRESENTATIVENESS
& INFORMATIVENESS

The approaches discussed so far have looked at either the
informativeness of queries and selected queries which are
most informative in terms of their ability reduce the uncer-
tainty of the ranking model or they have focussed on repre-
sentativeness of queries and selected representative queries
spanning the entire array of different topics. As we dis-
cussed earlier in subsection 3.3, optimizing for only one of
the two criteria for query selection could significantly limit
the performance of query selection by selecting suboptimal
query subsets. In this section we present a way of combin-
ing the two objectives by means of submodular functions
and propose a submodular objective which jointly captures
the notions of representativeness and informativeness.

6.1 Submodular Functions

Submodular functions are discrete functions that model
laws of diminishing returns and can be defined as follows:[19]:
Given a finite set of objects (samples) @ = {q1,...,qn} and
a function f : 25 — R that returns a real value for any
subset S C @, f is submodular if given S C S’, and ¢ ¢ S’

F(S+a) = f(S) > f(S" +q) - f(5) (4)

That is, the incremental "value” of ¢ decreases when the set
in which ¢ is considered grows from S to S’. A function is
monotone submodular if ¥S C S, f(S) < f(5'). Powerful
guarantees exist for such subtypes of monotone submodular
function maximization. Though NP-hard, the problem of
maximizing a monotone submodular function subject to a
cardinality constraint can be approximately solved by a sim-
ple greedy algorithm [19] with a worst-case approximation

factor (1 —e™'). This is also the best solution obtainable in
polynomial time unless P=NP [10].

6.2 Problem Formulation

Submodularity is a natural model for query subset selec-
tion in Learning to Rank setting. Indeed, an important char-
acteristic of any query-subset selection technique would be
to decrease the value-addition of a query g € @ based on
how much of that query has in common with the subset of
queries already selected (S). The value f(¢|S) of a query in
the context of previously selected subset of queries S further
diminishes as the subset grows S’ D S. In our setting, each
q € @ is a distinct query, @ corresponds to the entire col-
lection of queries and S corresponds to the subset of queries
already selected from Q.

Mathematically, the query subset selection problem can
be formulated as selecting the subset of queries S which
maximizes the value of f(S) where f(S) captures both the
representativeness aspect as well as the informativeness as-
pects of queries. We next describe in detail the construction
of such a monotone submodular function and later present
a greedy algorithm to approximately solve the problem of
query subset selection.

6.3 Submodular Query Selection

We model the quality of the query subset in terms of both
the representativeness & informativeness. To capture both
these traits, we model the quality of the query subset as:

F(S) = B2(S) + (1 = B)¥(S) ()

where ®(S) captures the representativeness aspect of the
query subset (S) with respect to the entire query set @ while
¥ (S) rewards selecting informative queries. The parameter
[ controls the trade-off between the importance of represen-
tativeness & informativeness while selecting queries. A sin-
gle weighting scheme would not be suitable for all problems
since depending on the constituent queries, size of the overall
dataset and the size of the subset that needs to be selected,
different weighting schemes would produce different results.
The function F(S) will be monotone submodular if each of
®(S) and ¥(S) are individually monotone submodular. We
defer an in-depth analysis of the trade-off between represen-
tativeness & informativeness aspects to subsection 8.1 and
next describe the details of both these functions.

6.3.1 Representativeness: ®(S)

®(S) can be interpreted either as a set function that mea-
sures the similarity of query subset S to the overall query set
Q, or as a function representing some form of “representa-
tion” of @ by S. Most naturally, ®(S) should be monotone,
as representativeness improves with a larger subset. ®(S)
should also be submodular: consider adding a new query to
two query subsets, one a subset of the other. Intuitively,
the increment when adding a new query to the small subset
should be larger than the increment when adding it to the
larger subset, as the information carried by the new query
might have already been covered by those queries that are
in the larger subset but not in the smaller subset. Indeed,
this is the property of diminishing returns.

We employ the same functional form of ®(.5) as was adopted
by Lin et al.[16]. Specifically, a saturated coverage function



is defined as follows:

B(S) = Y min{Cq(5),aC,(Q)} (6)

q€Q

where C,(S) is a set based function defined as Cy(S) : 2° —
R and 0 < o < 1 is a threshold co-efficient. Intuitively,
Cq(S) measures how topically similar S is to query g or how
much of the query ¢ is covered by the subset S. Building
on top of the earlier proposed LDA topic model based query
selection, we define the coverage function Cy(S) in terms of
the topical coverage of queries. More specifically,

Cq(9) = Z Wq,q’ (7)

q’'es

where wg s > 0 measures the topical similarity between
queries ¢ and ¢’. Since Cy(S) measures how topically similar
S is to query ¢, summing Cy(S) Vg € Q would measure how
similar the current subset S is to the overall set of queries Q.
It is important to note that Cy(Q) is just the largest value
C4(S) can ever obtain because @ is the set of all the queries
we have and it maximally represents all the information we
have. We call a query ¢ saturated by the subset of queries S
when min {Cq(S),aCq(Q)} = aCq(Q). When g is saturated
in this way, any new query cannot further improve the cover-
age even if it is very similar to the query ¢. Thus, this gives
other queries which are not yet saturated a higher chance of
being better covered and hence the resulting subset tends to
better cover the entire set of queries Q.

6.3.2 Informativeness: ¥(9)

The ®(S) function described above intuitively captures
the notion of coverage or representativeness by selecting sub-
set of queries S which are topically most representative of
the entire set of queries (). While representativeness is an
important trait, we also wish to capture the informativeness
aspect of queries and select queries which are most infor-
mative to the current version of the ranking model. We
formulate the functional form of ¥(S) based on top of the
earlier proposed ways of encapsulating query-level informa-
tiveness in terms of either ranker disagreements or model
uncertainity, or both. As a precursor, it is worth mention-
ing that to define the function ®(S) we make use of LDA
topic model which gives us k-topics and we associate each
query to one of these k-topics. Formally, we define the ¥(S)
function as follows:

K

v => /> T, ®)
=1 qeEP;NS

where P;,i = 1,..., K is the topical-partition of the set of
queries @ into K-topics and Y4 captures the informativeness
carried by the query ¢ based on the current ranking model.
The function ¥(S) rewards topical-diversity along with valu-
ing informativeness since there is usually more benefit to se-
lecting a query from a topic not yet having one of its query
already chosen. As soon as a query is selected from a topic,
other queries from the same topic start having diminishing
gain owing to the square root function (v24++v/1 > v/3+0).
It is easy to show that W(S) is submodular by the compo-
sition rule. The square root is non-decreasing concave func-
tion. Inside each square root lies a modular function with
non-negative weights (and thus is monotone). Applying the
square root to such a monotone submodular function yields

a submodular function, and summing them all together re-
tains submodularity.

The informativeness of a query Y, can be defined based
on the metrics proposed earlier. To incorporate the infor-
mativeness aspects of queries, we experiment with various
different formulations of the singleton-query rewards (Yq)
include the following::

e Disagreement Score for a query - this allows us to
capture information about the disagreement about the
document rankings for a query among a committee of
ranking models [5]

e Uncertainty associated with the query - this allows us
to capture the ranking model’s uncertainty about the
query’s document rankings 4

e Combination of uncertainty & disagreement.

Based on empirical analysis, we find that the disagreement
based reward functions perform better than the rest of the
formulations across all datasets, so we skip the performance
comparisons among these.

6.4 Greedy Optimization

Having defined the individual functions based on the dif-
ferent paradigms, we formulate the overall query subset se-
lection problem as the selection of the subset S of queries
which maximizes the following function:

F(S) = g Zmin Z Wy, g’ O Z We,q/

q€Q q'es q'eqQ

+oa=8> 1> T,
i=1 qgeP;NS

Modelling the query selection problem in such an objective
provides many advantages. Firstly, the submodular formula-
tion provides a natural way of coupling the different aspects
of query selection. Secondly, the above formulation can be
optimized efficiently and scalably given the monotone sub-
modular form of the function F'(S). Assuming we wish to
select a subset of N queries from the total unlabelled set
of @ queries, the problem reduces to solving the following
optimization problem:

S* = argmax F(S) (10)
SCQ,IS|SN

(9)

While solving this problem exactly is NP-complete [10], tech-
niques like ILP [18] can be used but scaling it to bigger
datasets becomes prohibitive. Since the function F(S) is
submodular, it can be shown that a simple greedy algorithm
will have a worst-case guarantee of f(S*) > (1—2)F(Sopt) ~
0.63F(Sopt) where Sop: is the optimal and S* is the greedy
solution [10]. This constant factor guarantee has practical
importance. First, a constant factor guarantee stays the
same as N grows, so the relative worst-case quality of the
solution is the same for small and for big problem instances.
Second, the worst-case result is achieved only by very con-
trived and unrealistic function instances - the typical case is
almost always much better. The greedy solution works by
starting with an empty set and repeatedly augmenting the
set as

S < S Uargmax F(g|S) (11)
gEQ\S



MQ2007 Dataset
nQueries SF LDA PL ELO | QBC | RDM
30 0.496*% 0.495 0.493 0.493 | 0.493 0.482
50 0.502*% 0.501 0.496 0.494 | 0.490 | 0.485
100 0.509 0.504 0.510*% | 0.506 | 0.500 | 0.501
150 0.518*% 0.517 0.510 0.511 | 0.506 0.507
250 0.528*% 0.527 0.519 0.517 | 0.513 | 0.516
350 0.527 0.528" 0.523 0.520 | 0.525 0.523
400 0.531"¢ [ 0.531°% | 0.526 | 0.523 | 0.526 | 0.524
500 0.535*% 0.531 0.530 0.528 | 0.527 | 0.526
MQ2008 Dataset
nQueries SF LDA PL ELO | QBC | RDM
30 0.730" | 0.728 0.722 0.716 | 0.728 | 0.714
50 0.735" | 0.731 0.731 0.720 | 0.734 | 0.721
100 0.741*% | 0.740 0.739 0.724 | 0.735 | 0.733
150 0.743" | 0.742 0.740 0.729 | 0.742 | 0.734
250 0.745 0.745 | 0.748*% | 0.735 | 0.746 0.740
350 0.751% 0.749 0.745 0.749 | 0.747 0.744
400 0.753*% | 0.750 0.748 0.746 | 0.747 | 0.745
OHSUMED Dataset
nQueries SF LDA PL ELO | QBC | RDM
25 0.466" 0.459 0.463 0.463 | 0.465 | 0.432
30 0.464 0.466 0.473"% | 0.454 | 0.455 0.462
35 0.463 0.478*% 0.476 0.467 | 0.458 | 0.463
40 0.478*% 0.460 0.468 0.455 | 0.469 | 0.460
45 0.481*% 0.473 0.456 0.455 | 0.464 0.473
50 0.484*% 0.466 0.467 0.467 | 0.472 | 0.464

Figure 1: Performance evaluation based on NDCG@10 scores for
the different algorithms; SF: Submodular function based query selec-
tion, LDA: LDA Topic Model based query selection, PL: Permutation
Probability Based Query Selection, ELO: expected loss minimization
baseline, QBC: Query-By-Committee baseline, RDM: Random query
selection baseline. nQueries is the number of queries in the labelled
set = base set + actively labelled queries. * and & indicates a sta-
tistically significant result (t-test, p<0.05) when compared to ELO &
QBC respectively.

until we select the N number of queries in the subset we
intended.

Overall, we select query subsets based on the aforemen-
tioned formulations; we next describe in detail the experi-
mental evaluation performed to compare the performances
of the three proposed approaches against state-of-the-art
baselines.

7. EXPERIMENTAL EVALUATION

We evaluate the proposed query selection strategies on
web search ranking and show that the proposed techniques
can result in good performance with much fewer labelled
queries. We next describe our experimental settings along
with the baselines, dataset and evaluation metrics used.

7.1 Compared Approaches

We compare the performance of the proposed query selec-
tion strategies against existing state-of-the-art approaches.
The compared approaches include:

e Query-By-Committee (QBC): The Query-By-
Committee (QBC) approach involves maintaining a
committee of models wherein each member is then al-
lowed to vote on the labellings of query candidates.
The most informative query is considered to be the in-
stance about which the committee members most dis-
agree. QBC based query selection strategy was used
in [5] for ranking adaptation.

e Expected Loss Optimization (ELO): Based on the
ELO framework described by Long et al [17], we im-

plemented the query-selection phase of the originally
proposed 2-phase active learning framework to select
queries wherein the most informative queries are se-
lected by optimizing the expected DCG loss. As is
mentioned in the original paper, we use score-range
normalization to calculate the gain function. For de-
tails, please refer to [17].

e Random Query Selection (RDM): Queries are se-
lected randomly for labelling from among the set of
unlabelled queries. It is to be noted that random query
selection is the primary method used in most settings
[6].

e Permutation Probability Model (PL): Our first
proposed approach (§ 4) based on capturing informa-
tiveness of queries via the uncertainty reduction prin-
ciple.

e Topic Model (LDA): Our second proposed approach
(§ 5) based on selecting representative queries which
are most topically similar to the set of unlabelled queries.

e Submodular Model (SF): Our final proposed ap-
proach (§ 6) based on the coupled submodular objec-
tive which incorporates both the aspects of query in-
formativeness & representativeness.

7.2 Dataset

We use three commonlyused real-world learning to rank
datasets: (i) MQ2007; (ii) MQ2008 from LETOR 4.0 which
uses query sets from Million Query track of TREC 2007,
TREC 2008 and (iii) the OHSUMED test collection, a sub-
set of the MEDLINE database, which is a bibliographic
database of important, peer-reviewed medical literature main-
tained by the National Library of Medicine. It is worth
mentioning that the proposed approaches make use of query
term information which is not available in many other rank-
ing datasets, hence we restrict our evaluation to these three
datasets having query term information. There are ~1700
queries in MQ2007, ~800 queries in MQ2008 and ~100 queries
in the OHSUMED dataset. The MQ2007 & MQ2008 datasets
are of notable size and query selection indeed makes sense
in the such datasets; the OHSUMED dataset, on the other
hand, has too few queries to select from which isn’t ideal
for a query selection scenario. Nevertheless, we compare
performances across all datasets.

We adopt a 5-fold cross validation scheme with each fold
divided into three parts, one each for training, validation
and testing in the ratio 3:1:1. Each query-document pair is
represented using 46 features [45 in case of the OHSUMED
dataset) along with the relevance score from among {0,1,2}.
The test set is used to evaluate the different query selection
strategies while active learning is performed on queries from
the training set.

7.3 Experimental Setting

We start with a base set of 40 labelled queries randomly
sampled from the entire query set; the rest of the queries
form the candidate set. We make use of C' = 4 committee
members (where applicable) each of which is constructed
based on the procedure described earlier (subsection 4.1).
To learn the initial ranking models for each of the commit-
tee members, we randomly select a sample of 20 queries from
the base set of 40 queries and build a ranking model based



MQ2008 Dataset MQ2007 Dataset
% Queries SF LDA PL ELO QBC RDM SF LDA PL ELO QBC RDM
~5% 0.726 0.731* 0.721 0.729 0.730 0.728 | 0.514*¢ 0.505 0.486 0.501 0.498 0.498
~10% 0.735 0.737*¢ 0.733 0.734 0.734 0.726 | 0.508 0.498 0.501 0.503 0.507 0.496
~25% 0.738*% 0.732 0.733 0.731 0.730 0.727 | 0.513"% 0.509 0.511 0.507 0.511 0.504
~50% 0.745*% 0.731 0.734 0.735 0.734 0.728 | 0.516*% 0.510 0.505 0.509 0.514 0.505

Table 1: Generalizability across different Learning to Rank algorithm: NDCG performance based on ADARANK algorithm. Performance
evaluation based on NDCG@10 scores for the different algorithms; SF: Submodular function based query selection, LDA: LDA Topic Model
based query selection, PL: min-max Plackett-Luce Based Query Selection, ELO: expected loss minimization baseline, QBC: Query-By-Committee
baseline, RDM: Random query selection baseline. % Queries is the % of queries in the labelled set = base set + actively labelled queries. * and
& indicates a statistically significant result (t-test, p<0.05) when compared to ELO & QBC respectively.

on these queries as training data. We first focus on Lamb-
daMART [11], (a state-of-the-art learning to rank algorithm
that was the winner of the Yahoo! Learning to Rank chal-
lenge [4]) to build ranking models used in the initial part of
our experiments. We later show (subsection 8.2) that the
queries selected by this method could also be used by other
Learning to Rank algorithms.

The entire experiment is repeated multiple times over the
5 folds on each dataset. We perform batch mode Active
Learning for queries by selecting a batch of top 10 queries
from the candidate set of queries based on the query se-
lection criterion at each round and iteratively add them to
our base set. Queries having no relevant documents were
ignored while calculating the different metrics. Based on
empirical estimation, the threshold parameter in equation 6
was initialized as a = 0.8. For our initial results, we evaluate
the performance of the proposed query selection strategies
based on their NDCG@10 values in the test set. We later
analyse the generalizability of our approach on a different
metric (MAP).

8. RESULTS

We compare the NDCG@10 performance of the test set
against the number of queries in training set (base queries
plus actively selected) in Figure 1 for the different datasets
and compare the performance of the proposed query selec-
tion schemes against the QBC, ELO and Random baselines
(statistically significant results are highlighted in the respec-
tive tables). For all the methods, the NDCG@10 values
tends to increase with the number of iterations which is in
line with the intuition that the quality of the ranking model
is positively correlated with the number of examples in the
training set.

While min-max PL based query selection stems from the
same class of approaches (informativeness based) like the
two baselines ELO & QBC, it performs better than both
these baselines in most cases; this is in line with our ini-
tial claim of capturing informative queries from an alternate
view of informativeness based on uncertainty reduction. We
observe that LDA Topic Model based query selection per-
forms better than existing baselines as well as the PL model
which suggests that the quality of the queries selected by
this scheme is better than those selected by other strate-
gies which are mostly based on the informativeness aspect.
Perhaps selecting queries based on the informativeness re-
sults in some noisy outlier queries getting selected, a case
which LDA topic model based query selection avoids by se-
lecting representative queries. The minor fluctuations and
occasional dip in the NDCG values on adding more queries
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Figure 2: Tradeoff analysis between Informativeness & Rep-
resentativeness for the MQ2007 datasets. The S coefficient
in equation 5 controls the relative importance of the two
aspects.

to the labelled set could be explained by the fact that some
queries are indeed noisy and selecting such queries induces
noise in the ranking models, which results in a slightly worse
ranker performance.

Finally, we observe from the results that the submod-
ular objective (SF) outperforms the baselines as well as
(in most cases) our own proposed purely informativeness
& purely representativeness based query selection schemes
across the different datasets. While purely informativeness
based methods tend to select noisy queries, purely repre-
sentativeness based methods might possibly select queries
which are representative but add redundant information.
Hence, selecting queries based on the coupled aspects selects
queries which are not only representative of other unselected
queries, but are also informative to the ranking model.

8.1 Trade-Off between Informativeness &
Representativeness

Our main motivation behind introducing the submodular
objective was to couple the notions of informativeness and
representativeness in a joint coherent manner. Indeed, an
ideal subset of queries would be a fine blend of queries which
convey the maximal amount of information to the ranking
model while at the same time, be characteristic of the unse-
lected set of queries. In Figure 2, we present a example anal-
ysis on one of the datasets of the relative importance of the
two aspects and how they contribute to the overall ranking
performance. As can be seen in the figure, a relative weight-



MQ2008 Dataset MQ2007 Dataset
% Queries SF LDA PL ELO QBC RDM SF LDA PL ELO QBC RDM
~5% 0.354*¢  0.354* 0344 0.341 0.340 0.342 0.164" 0.147 0.147 0.154 0.163 0.149
~10% 0.3717% 0.328 0.354 0.362 0.361 0.352 | 0.164"“ 0.146 0.155 0.148 0.160 0.159
~25% 0.362 0.369*¢ 0.357 0.357 0.362 0.361 | 0.165"% 0.158 0.161 0.157 0.161 0.160
~50% 0.360 0.371°% 0.367 0.369 0.346 0.365 | 0.166*% 0.166"% 0.160 0.153 0.135 0.159

Table 2: Generalizability across different Learning to Rank algorithm: AP performance based on Adarank algorithm. Performance evaluation
based on NDCG@10 scores for the different algorithms; SF: Submodular function based query selection, LDA: LDA Topic Model based query
selection, PL: min-max Plackett-Luce Based Query Selection, ELO: expected loss minimization baseline, QBC: Query-By-Committee baseline,
RDM: Random query selection baseline. % Queries is the % of queries in the labelled set = base set + actively labelled queries. * and & indicates
a statistically significant result (t-test, p<0.05) when compared to ELO & QBC respectively.

ing scheme of 8 = 0.3 (which weighs representativeness-
vs-informativeness in 3:7 proportions) works best for query
selection. This highlights that while representativeness is
important, selecting informative queries from the different
topics indeed helps. Also, it must be noted that the in-
formativeness term in Equation 9 not only contains contri-
butions from query’s singleton informativeness reward, but
also has contributions from the topical segregation of queries
into partitions. Overall, we chose the coeflicient 5 = 0.3 to
weigh the contributions from the two aspects while reporting
results. It is to be noted that domain knowledge about the
dataset in consideration can be used to vary S accordingly,
depending on the desired proportion of representativeness &
informativeness.

For a milder sized dataset (MQ2008), putting more weight
on informativeness helps initially while the relative contri-
butions tend toequal out once a certain threshold of queries
have been selected. Overall, the general weighting factor or
B = 0.3 works well consistently across different datasets.

8.2 Generalizability Across Learning
Algorithms & Metrics

For initial results shown before, the query selection method
uses LambdaMART as the learning to rank algorithms opti-
mized for the NDCG metric. Since the labelled learning to
rank dataset generated as a result of the query selection pro-
cess could potentially be used in any future ranking systems,
the selected queries should ideally be usable by any learn-
ing to rank algorithm, optimized for any metric. We analyze
such generalization performance in these sets of experiments.
While the initial set of results presented above were NDCG
values based on LambdaMART ranking algorithm optimiz-
ing for NDCG metric, we divert from our original setting
and present results on a different ranker: AdaRank [26] in
table 1. Similar results for the OHSUMED dataset can be
seen in Fig 3. Additionally, we demonstrate the performance
of the proposed query selection strategies on a different met-
ric (MAP) and report results in Table 2. Overall, we can
see that the proposed query selection methodologies con-
sistently perform better than the baselines across different
ranking algorithms and metrics.

8.3 Labelling Cost Reduction

We next analyse the reduction in labelling cost achieved
as compared to the case where the entire set of unlabelled
queries were labelled. The performance of the ranking func-
tion trained with the whole labelled data set is referred to as
the optimal performance. When the performance of the ac-
tive learning model obtained with the proposed algorithms

MQ2007 MQ2008 OHSUMED

Algorithm SS LCR SS LCR | SS LCR
SF ~370 63% | ~330 5% | ~45 29%
LDA ~390 61% | ~400 48% | ~55 14%
PL ~490 51% | ~510 35% | ~55 14%
ELO ~ 560 44% | ~520 34% | ~ 60 6%
QBC ~ 620 39% | ~540 31% | ~ 60 6%
RDM ~ 720 29% | ~570 27% | ~ 60 6%

Table 3: The performance in terms of the Labelling Cost
Reduction (LCR) and the Saturated Size (SS) for the various
compared approaches.

OHSUMED Dataset
nQueries SF LDA PL ELO | QBC | RDM
30 0.473 | 0.469 | 0.478 | 0.477 | 0.478 | 0.466
40 0.478 | 0.478 | 0.475 | 0.472 | 0.477 | 0.467
50 0.478 | 0.466 | 0.469 | 0.477 | 0.477 | 0.473

Figure 3: Results on the OHSUMED dataset with LamdaMART
Learning to Rank algorithm. * and & indicates a statistically signif-
icant result (t-test, p<0.05) when compared to ELO & QBC respec-
tively.

is comparable to the optimal performance, we call the size of
training data as the saturated size (SS). Table 3 highlights
the approzimate labelling cost reduction (LCR) results ob-
tained via the proposed query selection techniques. The %-
ages were calculated based on the average number of queries
in the training set. The corresponding values were calcu-
lated using the LambdaMART implementation with NDCG
metric. Experimental evaluation shows the proposed query
selection algorithms indeed require less number of queries
to be labelled than baseline methods to achieve compara-
ble ranking performance. It is worth mentioning that at
some point, adding more queries to the labelled training set
doesn’t help improve ranking performance, as can be seen by
the results of the RDM algorithm in the table: with about
720 labelled queries out of 1015 queries, the algorithm is
able to demonstrate comparable ranking performance.

9. CONCLUSION & FUTURE WORK

We formulated approaches to the query selection prob-
lem into two classes: informativeness based and represen-
tativeness based strategies and proposed two novel query
selection strategies, one from each class respectively: per-
mutation probability based and LDA Topic Model based
query selection. Additionally, we argued that an ideal query
selection scheme should incorporate insights from both the
aspects and presented a principled way of coupling informa-
tion from the two aspects. Based on rigorous experiments




we demonstrated the efficacy of the proposed query selec-
tion schemes. A possible line of future work could look at
enriching the representativeness aspect by adding document
level information to the topic model.
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