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ABSTRACT
Bandit algorithms have gained increased attention in recommender
systems, as they provide effective and scalable recommendations.
These algorithms use reward functions, usually based on a numeric
variable such as click-through rates, as the basis for optimization.
On a popular music streaming service, a contextual bandit algo-
rithm is used to decide which content to recommend to users, where
the reward function is a binarization of a numeric variable that de-
fines success based on a static threshold of user streaming time: 1
if the user streamed for at least 30 seconds and 0 otherwise. We
explore alternative methods to provide a more informed reward
function, based on the assumptions that streaming time distribu-
tion heavily depends on the type of user and the type of content
being streamed. To automatically extract user and content groups
from streaming data, we employ "co-clustering", an unsupervised
learning technique to simultaneously extract clusters of rows and
columns from a co-occurrence matrix. The streaming distributions
within the co-clusters are then used to define rewards specific to
each co-cluster. Our proposed co-clustered based reward functions
lead to improvement of over 25% in expected stream rate, compared
to the standard binarized rewards.

ACM Reference Format:
Paolo Dragone, Rishabh Mehrotra, and Mounia Lalmas. 2019. Deriving User-
and Content-specific Rewards for Contextual Bandits. In Proceedings of
the 2019 World Wide Web Conference (WWW ’19), May 13–17, 2019, San
Francisco, CA, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3308558.3313592

1 INTRODUCTION
Given the overwhelming choices faced by users on what to watch,
read and listen to online, recommender systems play a pivotal
role in helping users navigate the myriad of choices. Most modern
recommender systems are powered by interactive machine learning
algorithms such as bandits [14, 17, 23], which learn to adapt their
recommendations by estimating a model of the user satisfaction
metric from the users feedback.
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A key component of such bandit based recommender systems
is the choice of reward function. A proper reward function should
correlate well with user satisfaction, to allow the model to learn
to serve good recommendations. Most prior work on quantifying
satisfaction has relied on leveraging implicit signals derived from
user interactions, mostly clicks [12, 19, 21, 25]. Often, click based
signals are not informative enough and fail to differentiate between
satisfying and dissatisfying experiences of users [11, 28]. Conse-
quently, there has been a pressing need to move beyond clicks and
investigate post-click behavior of users. These focus on the engage-
ment of users with the served recommendations and have shown
promising results in other areas [1, 11, 15].

Considering the specific use case of music streaming, quanti-
fying such a notion of satisfaction from implicit signals involves
understanding the diverse needs of users and their expectations of
what is a successful streaming session. Such needs often include
how users feel, and the expectations that music recommended to
them align with their mood or their intent of the moment [8]. To
fulfill these, music streaming services provide users with curated
playlists, ranging from ”sleep" to ”run". In addition, and to account
for the diverse user interests and plethora of musics, genre playlists
have been made available to users, ranging from rap, pop, jazz,
to niche ones. As a results, millions of playlists are available to
users to listen to based on their intent and needs. Given such a
heterogeneity in user needs, and the different intents of content
(playlists), it becomes important to consider both user and content
behavior to formalize the notion of satisfaction, and in turn design
the appropriate reward models to capture these.

A major portion of work done on specifying reward functions
rely on manually crafted functions, including rewards based on
click-through behavior of users and other positive and negative
feedback signals [29]. Some efforts have looked at strategies to im-
prove the reward estimation in dynamic recommendation environ-
ments [2]. Overall, most bandit models powering recommendation
system employ a rather simple threshold based reward function,
mostly determined through click-through behavior of the user: if
user clicks on X, a payout of 1 is incurred and 0 otherwise [17].

In this work, we go beyond such simple threshold-based formu-
lation. We consider the case of a music streaming service, Spotify,
powered by a contextual bandit model [20], and aim at defining ap-
propriate reward functions to optimize the bandit model. We revisit
how success is quantified, based on how users consume playlists
and how playlists are consumed by users. Our approach moves
from a simple user- and content-agnostic, binary reward model
to a more sophisticated reward model, which is aware of the dis-
tribution of listening behavior. We highlight the need for jointly
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considering user and content interaction to define rewards, and
leverage insights from co-clustering of users and contents together
to define rewards. We obtain a substantial improvement of over
25% in expected stream rate with our proposed co-clustering-based
calculation of the reward functions.

2 BACKGROUND AND MOTIVATIONS
Our work aims to improve on a current bandit algorithm used to
select which playlists to display to users on the home of Spotify, a
popular streaming service [20].

Rewards for playlist recommendation. Playlist recommenda-
tion in music streaming services is often cast as a contextual bandit
problem. Given a set of playlists Y , a contextual bandit algorithm
has to decide which playlists to recommend to a useru ∈ U at a cer-
tain time iteration t ∈ 1, . . . ,∞. At each iteration t , the algorithm
has access to a “context”, i.e. a feature vector xt,y for each playlist
y ∈ Y . For each recommended playlist yt , the algorithm receives a
reward r̂t based on the metric being optimized and the behavior of
the user. In playlist recommendation, the most frequently employed
metric is the stream rate, i.e. a binary reward indicating whether
the user has streamed the playlist yt or not. When optimizing for
stream rate, the reward signal with which the algorithm is trained
is a function of the streaming time the user has listened a recom-
mended playlist for, r̂t = r̂ (st ). This is a binary reward function that
assigns a value of 1 to recommendationsyt for which the streaming
time st exceeds a given threshold of 30 seconds:1

r̂ (s ) =



0 if s ≤ 30 seconds
1 if s ≥ 30 seconds

(1)

As the users preferences, and thus their behavior, are unknown
and non-deterministic, the contextual bandit algorithm has to trade-
off exploration for gathering information about the user preferences
over the playlist domain and exploitation for maximizing the ex-
pected reward. The expected reward E[rt,y ], in our case the ex-
pected stream rate, of a playlist y in context xt,y is unknown and
has to be estimated from data collected in the recommendation
process. Thus, the expected reward is modeled as a parametrized
function of the type:

E[rt,y ] = h(xt,y ;θt ) (2)

The above function can then be learned from some hypothesis
class h ∈ H (e.g. as a linear model or a neural network), and the
previously recommended playlists and the resulting users behaviors.
New recommendations are selected at each iteration by sampling
according to some policy, i.e. a probability distribution that accounts
for some degree of exploration versus exploitation. Commonly used
policies encompass an exploitation component that selects the best
playlists according to the current model yt = argmaxy∈Y E[rt,y ],
and an exploration component that selects novel recommendations
according to some criteria (e.g. uniform random sampling). As this
paper focuses on the definition of novel reward functions, we refer
to the literature for details on the algorithmic framework [17].

The reward signal defined in Equation 1 is, effectively, a transla-
tion of the click-through rate, used in many other domains, to music
1The 30 seconds threshold is somewhat arbitrary, and it is often determined by unre-
lated factors.

recommendation. In this paper we explore the use of the streaming
time as a metric of its own and not just as a static threshold. Next
we discuss the limitations of the standard stream rate metric.

Stream rate. Using the stream rate as above defined as a reward
signal, the algorithm learn an expected reward that models the
probability of a user to stream a given contenty for an undetermined
amount of time (more than a fixed threshold):

E[rt,y ] = p (user streams y) (3)

This, however, fails to take into account how the user actually
engaged with the recommended content after a successful recom-
mendation. In a music recommendation system, we can use the
streaming time st,yt as a proxy for the user engagement: the longer
a user streams a playlist, the higher the user engagement.

Even when a recommended playlist is streamed for more than
30 seconds, the user behavior, and thus the streaming time, can
still vary substantially, and as such may imply different things. If a
user clicks on and streams a playlist once, it does not necessarily
mean he or she will do it again in the future. Many streams are
“explorative”, i.e. the user streams a playlist for a short period to
evaluate its content. Other unsuccessful recommendations may also
be one-time streams or even mistaken clicks [26].

By employing a stream rate reward signal, the algorithm will
not learn to distinguish from genuinely successful recommenda-
tions, with which the user engages and is likely to engage in the
future, and other kinds of uninformative feedback. This is due to
the fact that the algorithm gets rewarded the same amount for any
recommended playlist that gets streamed, despite eventual large
differences in streaming time. Our objective is, instead, to maximize
the engagement of the user with respect to the recommended con-
tent. To do so, we take into account the distribution of streaming
time and define a success metric that rewards the algorithm only
when it makes recommendations with which the users truly engage.
This can be achieved by learning as expected reward modeling the
probability of a user being engaged with the recommended playlist,
assuming the user streams the playlist:

E[rt,y ] = p (user engages with y | user streams y) (4)

By learning this expected reward model, the algorithm is able to
estimate which content is more likely to keep the user engaged and,
hopefully, increase the chances for the user to stream (and engage
with) the content in the future. We propose different reward signals
that can be used to learn the above expected reward model.

Streaming time. While taking into account the streaming time
distribution is a step forward in defining an engagement-aware re-
ward signal for playlist recommendation, the reward is independent
on the user and the content that generated it. This implies that the
algorithm will learn to judge streams from any kind of users and
playlists with the same criteria. This might be suboptimal because
different users exhibit different listening behavior and different
playlists get listened in vastly different ways.

Indeed, a study comparing streaming time distributions asso-
ciated with specific groups of playlists and users to the global
distribution (for playlists and users, respectively) highlighted these
differences. For instance, the average streaming time across all
playlists is 23.75 minutes, compared to 43.28 minutes for “sleep”

2681



playlists, i.e. playlists people listen to fall asleep. This is almost
double the global average, demonstrating that this type of playlists
is listened to in a drastically different way. Now focusing on user
types, users who like Jazz music tend to listen to recommended
playlists (all playlists, not just Jazz playlists) for longer than other
users, with an average of 27.16 minutes, which is significantly
higher than the global average of 20.43 minutes.

This data highlights differences between listening habits of users,
as well as different attitudes towards certain types of playlists. This
suggests that a reward signal based on a single aka “static” threshold
is essentially averaging-out these peculiarities that are key to better
generalization over a vastly diverse set of users and contents. For
this reason, we also propose an approach to take into account user-
and content-specific patterns.

User and content patterns. Ideally, wewould have a reward func-
tion for each pair of user and content, defined on the streaming
behaviour of the user with respect to that content. This method,
however, would only work in an ideal situation in which we had
plenty of data from each user and each playlist. In practice, we
have extremely sparse data, in which each user listens to only a
handful of the available playlists. Applying such a method on our
data would result in poor generalization to similar users and con-
tents. We propose, instead, to group together users and playlists, on
the basis of their streaming time distribution, and to define reward
functions for each pair of user group and playlist group.

To extract these groups of users and playlists automatically, we
need to jointly cluster users on the basis of their streaming behav-
ior and playlists on the basis of how they get streamed. This can
be achieved using co-clustering, a technique that simultaneously
extract clusters from two different variables based on a joint dis-
tribution. We then define reward functions specific to each pair
of user cluster and playlist cluster, based on the streaming time
distribution of the users and playlists of each co-cluster.

3 DISTRIBUTION-AWARE REWARDS
We motivated the need for rewarding the contextual bandit algo-
rithm with a signal based on the engagement of the user with
streamed content, as opposed to a standard reward based on stream
rate only. Our approach consists in using the streaming time distri-
bution of our data as a basis for defining reward functions for user
engagement, with the assumption that the longer a user streams a
playlist, the higher the chances of him or her being engaged with
the content.

We present three different reward functions aiming to give a
sensible notion of user engagement in the playlist recommendation
setting.

Mean-based reward. The first reward function consists in a bi-
nary reward that determines whether a user is engaged or not. We
define a user being engagedwith a playlist when he or she streams it
for at least as long as global mean µ̂ of streaming times in our dataset.
We reward the algorithm with different values based on whether
the user is engaged or not. In formula (where 0 ≤ λ1 ≤ λ2 ≤ 1):

r̂ µ̂ (s ) =



λ1 if s ∈ [0, µ̂ )
λ2 if s ≥ µ̂

(5)

Additive reward. A more fine-grained solution is to define “en-
gagement levels”, each associated with a specific interval of stream-
ing time. Given the streaming time s the user spent on listening
to a recommended playlist, the algorithm will observe the reward
amount associated with the proper interval. We define the engage-
ment levels based on how different the streaming time is from the
mean µ̂. The variability of the streaming time can be quantified
with the standard deviation σ̂ of the streaming times, which we can
use to define engagement levels in the following way:

r̂ µ̂, σ̂ (s ) =




λ1 if s ∈ [0, µ̂ − σ̂ )
λ2 if s ∈ [µ̂ − σ̂ , µ̂ )
λ3 if s ∈ [µ̂, µ̂ + σ̂ )
λ4 if s ≥ µ̂ + σ̂

(6)

Here 0 ≤ λj ≤ λj+1 ≤ 1, for 1 ≤ j ≤ 3, are the reward amounts
associated with each level.With the same approach one could define
more engagement levels at any given granularity, by adding and
subtracting multiples and submultiples of the standard deviation. In
our experiments, however, we considered only these four intervals.

Cumulative reward. We can define infinite engagement levels as
a continuous function of the streaming time, based on the under-
lying distribution. This function needs to be bounded between 0
and 1 and increases with the streaming time. We obtain this “cu-
mulative” function by first fitting a model to the relative frequency
distribution, and then using the associated cumulative distribution
function to define the reward. As the streaming time distribution
in our data follow a clear exponentially decreasing pattern, we fit
the following exponential model to our data:

f (s;γ ) = γe−γ s (7)

The cumulative distribution function associated with the above is:

F (s;γ ) = 1 − e−γ s (8)

Once fitted, wee obtain the best γ̂ value to fit our data, which can
be used to parametrize the cumulative distribution function. The
cumulative reward function is then defined as follows:

r̂γ̂ (s ) = max {F (s; γ̂ ), λ} (9)

4 USER- AND CONTENT-AWARE REWARDS
We defined rewards that take into account the distribution of the
streaming time of the users, thereby optimizing the probability of
picking recommendations that would result in high streaming times
when streamed. Streaming patterns across different groups users
and different group of playlists are, however, very different from
each other. In this section we introduce a technique that allows
us to subdivide our data into smaller sets associated with closely
related groups of users and playlists, on the basis of their streaming
behavior. These subsets then help us defining reward functions that
are specific to the different user and playlist groups.

Co-clustering. We want to subdivide the distribution into smaller
sets based on similar streaming patterns across users and playlists.
As the streaming time distribution is jointly dependent on both
users and clusters, we should take into account these dependency
in the clustering process. This can be achieved using co-clustering,
a technique that simultaneously clusters two (or more) different
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variables based on a joint underlying distribution [6, 7, 24, 27]. Co-
clustering has been successfully employed in combination with
several recommendation techniques [4, 9, 16]. Co-clustering has
also been used to improve recommendation based contextual ban-
dits algorithms [18]. The difference with our work is that [18]
learns a co-clustering from the given reward, e.g. click-through
rate, whereas we use co-clustering to define specific metrics to
optimize for each user and playlist group.

We employ the information-theoretic co-clustering technique
introduced by Dhillon et al. [7]. Given two random variables, in
our case one variableU ∈ U representing the user and a variable
Y ∈ Y representing the playlist, and an underlying joint probability
distribution p (U ,Y ), co-clustering will output two sets of clusters
Û and Ŷ , as well as two mappingsCU : U → Û andCY : Y → Ŷ
from elements onto clusters. The number of k of row clusters and ℓ
of column clusters, i.e. elements of Û and Ŷ respectively, is fixed a
priori. The aforementioned technique computes a co-clustering by
minimizing the loss in mutual information [5] between the original
variables and the clustered variables. This in turn equates to finding
an approximate distribution q(U ,Y ) minimizing the KL-divergence
with the original distribution:

I (U ;Y ) − I (Û ; Ŷ ) = D (p (U ,Y )∥q(U ,Y )) (10)

where q(U =u,Y =y) = p (û, ŷ)p (u |û)p (y |ŷ), CU (u)=û, CY (y)=ŷ.
The algorithm minimizes the objective in a coordinate descent

fashion: at each iteration the algorithm re-computes the row and
column clusters separately by minimizing the marginal objectives:

CU (u) = argmin
û

D (p (Y |u)∥q(Y |û)) (11)

CY (y) = argmin
ŷ

D (p (U |y)∥q(U |ŷ)) (12)

for each row u (users) and column y (playlists). The algorithm
recomputes the distributions q(Û , Ŷ ), q(U |Û ) and q(Y |Ŷ ) with the
new found clusters. Each iteration diminishes the joint objective
D (p (U ,Y )∥q(U ,Y )). The algorithm keeps iterating through the data
until the maximum number of iteration is met or the change in the
objective between iterations is lower than a fixed threshold.

We chose this co-clustering technique because it scales better
then others with the amount of data we were dealing with. In
particular, given that our data is very sparse, this techniques scales
asO (nz·τ · (k+l )), where nz is the number of non-zero elements and
τ is the number of iterations, which was fixed to 20 as recommended
by [7]. We considered a maximum number of 15 clusters for both
rows and columns, and leave for future work how to determine the
optimal number of co-clusters.

Reward functions based on co-clusters. After co-clustering the
users and the playlists, we are left with k × l co-clusters, each asso-
ciated with a pair (û, ŷ) ∈ [1,k] × [1, ℓ] of user cluster and playlist
cluster. Each co-cluster is associated with a set of data points for all
users belonging to cluster û who listened to playlists belonging to
cluster ŷ. These data points define a co-cluster specific streaming
time distribution, which is used to define co-cluster specific reward
signals. We use the distribution-aware reward functions defined
in Section 3, but with respect to each co-cluster distribution. For a
given user u and playlist y belonging, respectively, to cluster û and

ŷ, we define the co-cluster specific binary engagement reward:

r̂ µ̂û,ŷ (si ) =



λ1 if si ∈ [0, µ̂û,ŷ )
λ2 if si ≥ µ̂

(13)

where µ̂û,ŷ is the average streaming time computed only on the
data point contained in the co-cluster (û, ŷ). Similarly, we can also
define the additive reward:

r̂ µ̂û,ŷ, σ̂û,ŷ (si ) =




λ1 if si ∈ [0, µ̂û,ŷ − σ̂û,ŷ )
λ2 if si ∈ [µ̂û,ŷ − σ̂û,ŷ , µ̂û,ŷ )
λ3 if si ∈ [µ̂û,ŷ , µ̂û,ŷ + σ̂û,ŷ )
λ4 if si ≥ µ̂û,ŷ + σ̂û,ŷ

(14)

with σ̂û,ŷ being the cluster specific standard deviation. For the
cumulative reward, we can fit different exponential models to each
co-cluster, thereby defining the co-cluster based reward as:

r̂γ̂û,ŷ (si ) = max {F (si ; γ̂û,ŷ ), λ} (15)

where γ̂û,ŷ is the parameter found by fitting the exponential model
on the co-cluster data.

The procedure for getting the co-cluster specific rewards from
the data is straightforward. First compute a co-clustering over the
dataset and group examples (ui ,xi ,yi , si ) by their associated co-
cluster (ûi , ŷi ). For each co-cluster (û, ŷ) compute the parameters
µ̂û,ŷ , σ̂û,ŷ and γ̂û,ŷ . Finally assign the co-cluster specific rewards
to each data point employing the respective parameters.

5 EXPERIMENTS
Dataset. The dataset consists of a sample of logged feedback data
from user interaction with the recommendation system of Spotify,
a popular music streaming service. The datasets contains about 9M
data points, each corresponding to an “impression”. Each impression
is associated with a userui , a recommended playlistyi , a contextual
feature vector xi , and the streaming time si (equal to 0 if the playlist
was not selected). The data included feedback from more than 800K
users about over 900K playlists.

The feature vectors used in the contextual bandit algorithm are
composed of more than 150K features, including: (i) features of
the user, such as age range, gender, location, affinity to genres; (ii)
features of the playlist such as its artist, its (micro andmacro) genres,
diversity of songs, popularity; (iii) affinity between the user and
the playlist, taking into account past interactions, such as streams,
skips, likes, and saves; and (iv) other contextual information, such
as the day of the week and the time of day.

The data was collected over a period of four weeks from a small
percentage of the live traffic of the production system. The first
three weeks worth of data were used for the training set (≈ 90%)
and the last one for the test set (≈ 10%).

Evaluation Setup. The trained model used in the production sys-
tem is an ensemble of boosted regression trees, trained by XG-
Boost [3]. We replicate the same training setup as the production
system, including the same hyper-parameters of the learning algo-
rithm. We train a model using the stream rate (akin to click-through
rates) as reward signal (Equation 1) and use it as a baseline. We
also use a random threshold approach as a second baseline, which
is a binary reward function akin to that in Equation 1, but whose
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Table 1: Precision, recall and F1 results (percentage over the baseline) for the different rewards over the global distribution.

Reward for global distribution Prec@1 Prec@5 Rec@1 Rec@5 F1@1 F1@5

Mean-based reward +19.30 % +3.27 % +22.68 % +2.40 % +20.94 % +3.13 %

Additive reward +15.33 % -0.62 % +15.81 % -0.53 % +15.57 % -0.60 %

Cumulative reward +6.91 % -0.38 % +8.92 % -1.04 % +7.89 % -0.48 %

threshold was set to a randomly chosen value in the range [0, 10]
minutes, instead of being fixed to 30 seconds.

We compare the two baselines against models trained with the
proposed reward functions on the global distribution, i.e. using
the same reward function (akin to post-click). We then compare
the models trained on reward defined with the use of co-clustering,
i.e. using the reward specific for its co-cluster (akin to per co-cluster
post-click). The hyper-parameters of the reward functions were
determined empirically. In addition, as there are no principled way
to determine a proper number of clusters, a typical situation when
employing unsupervised clustering techniques, the number of row
(user) and column (playlist) clusters were also determined empir-
ically. In Tables 1 and 2, we report standard precision, recall and
F1 measures, as improvement percentage over the first baseline
(stream rate based reward), for global- and co-clustering-based
rewards, respectively.

Evaluating a trained offline model on logged data from an online
recommender systems is know to lead to biases in the estimation
of the user satisfaction metric. This is because user feedback is
collected only on the recommended items selected by the given col-
lection policy, and no feedback is observed on every item that was
not recommended. To avoid this problem and perform an unbiased
evaluation of the models performance, we used a counterfactual
evaluation methodology [22], which constitutes a reliable and much
less expensive alternative to online A/B testing [10].

We follow the protocol laid out by [17]. We first collect test-
ing data using a random shuffle policy, which assigns a uniform
probability score to all recommendations presented to users. Upon
evaluation of a new policy, we “re-run” the history of recommen-
dations and keep only the recommendations that happen to be
selected again by the policy being evaluated. We then compute the
average evaluation metric (expected stream rate) on the retained
data points. The evaluation policy used was a multinomial distri-
bution defined on the learned expected reward function. Results
comparing various reward strategies are shown (the difference in
expected stream rate) in Figures 1 and 2.

6 RESULTS
Comparison of distribution aware rewards. Table 1 presents
the precision and recall results comparing distribution aware re-
ward functions with the static binary reward model. Overall, we
observe that distribution aware models perform better than con-
sidering a fixed threshold. The mean based reward performs better
than additive and cumulative reward, with over 19% gain in pre-
cision at the top and 22% gain in recall at the top. These results
highlight that considering the distribution of user engagement is

Figure 1: Expected stream rate improvement (in percentage
over normalized baseline) of the random threshold method
and all reward functions over the global distribution.

Figure 2: Expected stream rate improvement (in percentage
over normalized baseline) of all mean-based reward func-
tions over the distributions obtained by clustering users,
clustering playlists and co-clustering.

informative even without considering any user or content specific
insights. Furthermore, upon randomly setting the threshold (see
Figure 1), we observe an improvement in performance (expected
stream rate), which further demonstrates the incompetence of the
fixed threshold baseline strategy based on click-through rates.

Using co-clustering. Table 2 presents precision and recall results
for the co-clustering method for all three distribution aware re-
wards. The co-clustering based reward model outperforms all other
approaches, i.e. binary reward and global distribution aware reward.
We observe a substantial improvement of over 25% in the unbiased
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Table 2: Precision, recall and F1 results (percentage over the baseline) for the different rewards over the co-cluster distributions.
We experimented with several row x column numbers and we report those leading to the best performance.

Reward for co-cluster distribution
Row

clusters
Column
clusters

Prec@1 Prec@5 Rec@1 Rec@5 F1@1 F1@5

Mean-based reward 6 13 +24.74 % +6.11 % +26.40 % +5.62 % +25.56 % +6.04 %

Additive reward 2 10 +13.34 % +0.00 % +12.83 % +0.31 % +13.09 % +0.05 %

Cumulative reward 8 8 +13.34 % +2.76 % +14.76 % +2.58 % +14.04 % +2.74 %

Figure 3: Relative weights of the model’s features (by feature type) across the different trained models.

expected stream rate metric (see Figure 2). Similar to previously, the
mean based function performs better than additive and cumulative
even in the case of co-clustering of users and content.

While co-clustering of users and content allows us to jointly
capture insights from both when defining the reward function, it
may be hard to investigate the potential benefit offered by each.
To disentangle the effect of user clusters from content clusters, we
consider a special case of clustering, wherein we set the number
of content clusters to 1, to give us a user-cluster, and vice-versa
for content cluster. As shown in Figure 2, we observe that both
the user- and content- aware reward models perform better than
the static binary reward formulation, but both underperform the
co-clustering based reward functions.

Comparison across metrics. The counterfactual method results
indicate a consistent trend in performance across the unbiased coun-
terfactual and offline evaluation metric, as we observe improve-
ments in co-clustering based reward across all metrics. Furthermore,
it is important to note that our estimate of expected stream rate
metric is de-biased and corrected from position based bias, and as
a result, provides a more reliable indicator of the benefit offered by
the joint user- and content- aware reward model.

Quantifying the impact of contributing factors. We analyze
how the trained models are different in terms of the features they
give importance to. Figure 3 highlights the top 5 feature groups
for the baseline binary reward model, the global distribution aware
(mean) reward and the co-clustering reward model. As is expected,
for the most important feature, the models give different weights to
the different feature groups, with the baseline binary model method
emphasizing the part of the day features more over others, whereas
the distribution aware and user/content aware method focus on

genre affinity feature group most. Indeed, the binary reward model
is agnostic to user and content types, while the reward function in
the co-clustering model is taking into account how users interact
with content.

Looking beyond the most important feature group, among the
top 5 most important features, user and content co-clustering values
features that quantify user- and content- interactions: genre affinity
and 7 day card affinity, whereas the baseline binary reward model
values part of day and age group of users. Long term interactions
like the 30 day affinity of users with content is weighted more in
co-clustering than in others, which highlight the fact that training
via co-clustering based reward signal allows the model to capture
longer term interest and usage patterns.

Finally, we observe that as the reward signal becomes more
sophisticated (binary→ global mean→ co-clustering), the focus
moves from user-agnostic features (e.g. part of day), to user-only
and content-only (e.g. user age and gender), to more sophisticated
interaction based features (e.g. 30 day card affinity, genre affinity).
These results highlight the importance of carefully defining reward
signals that acknowledge the interaction between users and con-
tents in our context (listening to music) by learning to weight the
features appropriately.

7 CONCLUSIONS
We motivated this work by posting the hypothesis that distribu-
tion aware as well as user- and content-aware reward functions
–capturing the "post-click" experience– are better than binary re-
wards –capturing only clicks. Extensive large-scale experiments
on real world user data demonstrated the benefit of personalizing
the definition of reward function according to how users listen to
playlists and to how playlists are listened to.
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Reward definitions lie at the forefront of systems that adopt re-
inforcement learning based methods to serve recommendations to
users. As can be seen from our results, the reward function governs
how the model is trained and has a major impact on the recommen-
dations served. We contend that these results highlight the benefit
of considering distribution and user/content aware functions to
quantify the rewards, rather than creating hand-crafted reward
functions. Setting fixed thresholds is very common. Indeed, a major
portion of industrial search systems consider 30 seconds as the fixed
threshold on dwell time to gauge user satisfaction with a clicked
document [13].

Our findings reinforce the insight that when we optimize for a
metric of user satisfaction, it is important to go beyond clicks. By
focusing on the post-click experience, we can capture the "intent"
of the content, as shown with "genre"-affinity being the most sig-
nificant factor in impacting the bandit algorithm. We are also able
to capture that users are different regarding how they consume
content, as we see that "playlist affinity" is often the second most
significant factor. Using clicks alone cannot surface these important
components when measuring satisfaction.
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