
Contextual and Sequential User Embeddings for
Large-Scale Music Recommendation

Casper Hansen∗
University of Copenhagen

c.hansen@di.ku.dk

Christian Hansen∗
University of Copenhagen

chrh@di.ku.dk

Lucas Maystre
Spotify

lucasm@spotify.com

Rishabh Mehrotra
Spotify

rishabhm@spotify.com

Brian Brost
Spotify

brianbrost@spotify.com

Federico Tomasi
Spotify

federicot@spotify.com

Mounia Lalmas
Spotify

mounia@acm.org

ABSTRACT
Recommender systems play an important role in providing an en-
gaging experience on online music streaming services. However,
the musical domain presents distinctive challenges to recommender
systems: tracks are short, listened to multiple times, typically con-
sumed in sessions with other tracks, and relevance is highly context-
dependent. In this paper, we argue that modeling users’ preferences
at the beginning of a session is a practical and effective way to
address these challenges. Using a dataset from Spotify, a popular
music streaming service, we observe that a) consumption from the
recent past and b) session-level contextual variables (such as the
time of the day or the type of device used) are indeed predictive of
the tracks a user will stream—much more so than static, average
preferences. Driven by these findings, we propose CoSeRNN, a
neural network architecture that models users’ preferences as a
sequence of embeddings, one for each session. CoSeRNN predicts,
at the beginning of a session, a preference vector, based on past
consumption history and current context. This preference vector
can then be used in downstream tasks to generate contextually
relevant just-in-time recommendations efficiently, by using approx-
imate nearest-neighbour search algorithms. We evaluate CoSeRNN
on session and track ranking tasks, and find that it outperforms
the current state of the art by upwards of 10% on different ranking
metrics. Dissecting the performance of our approach, we find that
sequential and contextual information are both crucial.

CCS CONCEPTS
• Information systems → Recommender systems; Music re-
trieval.
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1 INTRODUCTION
Recommender systems are essential for providing an engaging
experience and for helping users navigating the vast amounts of
content available in online services. Successful recommender sys-
tems have to accurately model each user’s individual preferences,
such that the most relevant content can be presented to the user.
In this work, we consider online music streaming services, which
have become increasingly popular in the past decade. By letting
users access millions of tracks at the click of a button, they are
contributing to democratizing access to music. However, in con-
trast to other well-studied domains (such as recommending books,
movies or clothes), music recommender systems face distinctive
challenges [30]. Tracks are short, and therefore often consumed
together with other tracks; we refer to such a set of tracks listened
to in short succession as a session. A given session often contains
tracks from the user’s recent consumption history [1], suggesting
that the sequence of sessions captures essential information about
users’ changing preferences. Additionally, the relevance of tracks
is highly contextual, and preferences depend, among others, on the
time of the day and the current season [24]. We seek to embrace
these distinctive characteristics to produce a better, more accurate
model of user preferences. We focus on the following problem: for
a given user, we are interested in predicting, at the beginning of
a session, which tracks the user will listen to during the session.
We assume that we have access to the user’s past consumption and
to information about the current context. This formulation of the
problem enables generating recommendations that are not only
matching the user’s global tastes, but are also tailored to the spe-
cific context and situation they currently find themselves in. While
generic context-aware recommender systems have been studied in
the past [28], little work has been focused on music recommenda-
tion. We aim to address this gap.

We begin our investigation by exploring a dataset from an online
music streaming service, containing detailed information about the
tracks streamed during a two months period for a sample of 200,000
users. We define context as the time of the day (morning, afternoon,
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etc.) and the device used to access the service (mobile, desktop, etc.)
We find clear evidence that, for a given user, sessions sharing the
same context (e.g., sessions happening in the morning) are more
similar to each other than to sessions from a different context. We
also find that the more the tracks a user listens to during a session
deviate from their average preferences, the more likely they are to
hit the skip button—a negative satisfaction signal. Deviations from
the user’s average preferences may be due to contextual changes
(such as morning vs. evening), but also to preference drifts that
are captured in recent sessions. These observations are consistent
with our hypothesis: accurately modeling sequential and context-
specific intents is important to ensure high user satisfaction across
all sessions.

Taken together, these findings support the idea of learning se-
quence and context-aware models of user preferences. To this end,
we introduce CoSeRNN.1 Our starting point is a vector-space em-
bedding of tracks, where two tracks are close in space if they are
likely to be listened to successively. Given this space, CoSeRNN
models user preferences as a sequence of context-dependent em-
beddings (points in the track space), one for each session. At its
core, it is a variant of a recurrent neural network that takes as input,
for each session, the current session context and a representation
of the user’s past consumption. Given these, the model is trained
to output an embedding that maximizes the cosine similarity to
the tracks played during the session. Interestingly, we find that the
most effective way to produce this embedding is to fuse a long-term,
context-independent vector (intuitively capturing a user’s average
tastes) with a sequence and context-dependent offset (capturing
current and context-specific preferences).

We evaluate our approach experimentally against multiple com-
peting baselines on a) a session ranking task, where the goal is to
discriminate between the current session and previous ones, and
b) a track ranking task, where the goal is to predict which tracks a
user will listen to in the current session. Our approach performs
significantly better than competing approaches: we observe gains
upwards of 10% on all ranking metrics we consider. We study these
results in depth. First, we break them down by context, and observe
that CoSeRNN exhibits the biggest gains on infrequent contexts.
Second, we perform an ablation study and discover that combining
both sequential and contextual information is crucial to achieve
high accuracy. In summary, CoSeRNN sucessfully demonstrates the
benefits of modeling preferences at the session level.

Setting predictive performance aside, we believe that our design
choices also highlight an interesting point in the recommender
systems solution space. Broadly-speaking, our method falls within
the realm of representation learning, which postulates that low-
dimensional embeddings provide an effective way to model users
and items [20, 21]. Whereas most of the work in this area has been
focused on jointly learning user and item embeddings, we choose
a different path, and instead take advantage of an existing track
embedding space. By decoupling track and user embeddings, and
learning the latter based on the former, we ensure interoperability
with othermodels seeking to address problems that are distinct from
contextual or sequential recommendations—our focus in this paper.
In addition, and similarly to [21], our model does not seek to directly

1Contextual and Sequential Recurrent Neural Network

predict the individual tracks inside a session; instead, it generates
a session-level user embedding, and relies on the assumption that
tracks within the session lie inside a small region of the space.
Relevant tracks can then be found efficiently using approximate
nearest-neighbor search [2]. This choice enables our method to
scale to millions of tracks effortlessly.

Outline & Contributions. After briefly discussing related work
(Section 2) and describing our dataset (Section 3), we investigate
the following two research questions.

RQ1 Does music consumption depend on context? By means of
simple analyses, we show clear evidence of contextual pat-
terns in music consumption (Section 4) and thus answer the
question in the affirmative.

RQ2 Can sequential and context-dependent user embeddings better
anticipate a user’s music consumption? We address this ques-
tion by presenting CoSeRNN, a sequence and context-aware
model of user preferences (Section 5), and demonstrate that
it can achieve state-of-the-art results on several prediction
tasks (Section 6). We make our implementation of CoSeRNN
publicly available.2

2 RELATEDWORK
Recommender systems can be broadly categorized as using explicit
or implicit feedback, depending on how users are assumed to indi-
cate their preferences [20]. They can be further categorized based
on which information is available besides user feedback. This in-
cludes content-based [25], sequence-aware [27], context-aware [28],
and collaborative filtering recommender systems [20]. In practice,
the ideas underlying these various approaches can be combined to
match the exact problem setting at hand. Traditionally, matrix and
tensor factorization approaches have been widely successful for
recommendation tasks [10, 20], but recently deep learning based
techniques [37], specifically recurrent neural networks, have re-
ceived increasing interest, due to their ability to model the sequen-
tial nature of user-item interactions effectively [3, 9, 21, 29, 35]. Our
model is based on a recurrent neural network, and as such shares
similarities with this line of work.

Of particular relevance to us is session-aware recommendation [27],
where the focus is on modeling users’ preferences and intents dur-
ing a specific session. Early work on session recommendation uti-
lized Markov chains to predict the next action within a session [40],
and was later extended to Markov decision processes [31]. However,
if higher order models are used, then the state space grows too large
and becomes impractical. To this end, recurrent neural network
models have proven useful, especially for sequential click prediction
tasks [15, 38], where parallel mini-batches and ranking losses lead
to large performance increases over earlier work. Other approaches
focus on directly exploiting user behaviour to improve performance,
e.g., by explicitly modelling repeat consumption [1, 7, 29]. In con-
trast to previous work, we consider a slightly different setting: we
seek to model user preferences at the beginning of a session but
before observing any user interaction. We also assume access to
explicit information about the context.

2Code for CoSeRNN available at https://github.com/spotify-research/cosernn.
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The session-based recommender systems described above are
similar to the generic next-item recommendation setting [9, 19, 36],
but typically session-based methods directly exploit the similari-
ties between items within the same session. Related tasks include
predicting the first item in the next session [29], as well as pre-
dicting all items in the next session (also known as next-basket
recommendation in the e-commerce domain) [34]. However, as the
number of possible items grows, predicting every individual item
in a session becomes intractable due to the combinatorial number
of possibilities. In this paper, we overcome this problem by repre-
senting sessions compactly using embeddings. Thus, our setting is
similar to the next-item recommendation setting, since ultimately
we predict a single embedding representing an entire session.

The idea of predicting the embedding of the next item, rather
than the item itself, has been recently investigated [21]. Given an
embedding, recommendations are then based on inexpensive sim-
ilarity computations, which allows for very large item pools [2].
JODIE [21] learns dynamic user and item embeddings through a
coupled recurrent neural network, where the item embeddings are
based on learning a future user embedding projection. In addition
to dynamic embeddings, JODIE also uses static embeddings that
represent the long-term stationary properties of users and items,
respectively. In contrast to JODIE, our approach does not explicitly
project the user embedding, but rather learns it implicitly in the re-
current neural network component of our model. Also, we represent
long-term user properties as an explicit combination of all previous
sessions, and let the model learn a sequence and context-dependent
offset vector that is fused with the long-term representation.

2.1 Music Recommendation
Music recommender systems present different challenges compared
to recommender systems applied to movies, books, and other prod-
ucts [30]. The major differences are with regards to the duration of
an item (e.g., a song is typically much shorter than a movie) and
consumption type and intent (music streaming is inherently sequen-
tial and highly contextual). Some of these unique characteristics
have previously been explored in the setting of playlist generation
[4, 8]. Others have investigated the effects of context [6, 14, 33],
location [17], and even the weather [26]. However, these studies
usually rely on small-scale datasets and do not explore the impact of
context on recommendation accuracy and performance. In contrast,
our work takes advantage of a large-scale dataset from a leading
music streaming service, and evaluates the predictive performance
of a context and sequence-aware model on concrete recommenda-
tion tasks. Finally, we note that whereas we focus on the sequence
of sessions in this work, prior work on the publicly available Spotify
Music Streaming Sesssions Dataset [5] addressed the problem of
within-session sequencing.

3 DATASET
In this section, we introduce a dataset from Spotify, an online music
streaming service. Through Spotify, users have on-demand access to
millions of music tracks.3 We focus on so-called premium users, who
enjoy an unrestricted, ad-free streaming experience. We consider
the listening history of a sample 200,000 users from April 1st to
3See: https://newsroom.spotify.com/company-info/.

Table 1: Summary of the features extracted from a session t
contained in the dataset.

Symbol Description Domain

Dt Day of the week {1, . . . , 7}
Ht Time of the day {0, . . . , 23}
Yt Device Y

Nt Number of tracks in session N>0
∆t Time since last session R>0
zt Stream source Z

st Session embedding, all tracks R40

s+t Session embedding, played only R40

s−t Session embedding, skipped only R40

May 31st 2019. We group listening history into sessions, where we
define a session as the set of music tracks consumed in a given
time interval, such that two sessions are separated by at least 20
minutes of inactivity. On average, users in the dataset have 220
sessions during the two-month period, and each session consists of
10 tracks on average.

3.1 Session-Level Information
Each session is annotatedwith detailed information, including a) the
set of tracks played during the session, b) which tracks were skipped,
c) the stream source (user playlist, top charts, etc., collectively
denotedZ), d) a timestamp representing the start of the session, and
e) the device used to access the service. We process this information
into a set of features, presented in Table 1. The contextual features
available at the beginning of the session, Dt , Ht and Yt , can be
categorized into two types:

• Time context.We use day of the week Dt and time of the
day Ht . Note that even though, in Section 4, we partition
sessions by using Dt only, both features are used for the
model described in Section 5.

• Device context. In addition, we consider the device Yt used
by the user to access the service at the beginning of a session.
We restrict ourselves to the major devices: Y = {mobile,
desktop, speaker, web, tablet}.

We choose these features as our contextual variables because we
believe that they are both important and widely available. Never-
theless, our framework is independent of the particular choice of
context and other information (either explicit or implicit) such as
mood, activity, or intent can be integrated effortlessly, if available.

The music listened by the user during the session is summarized
using three 40-dimensional session embeddings, st , s+t , s

−
t . These

are described in Section 3.3, building upon the description of track
embeddings.

3.2 Track Embedding
We embed tracks in a latent semantic space using the word2vec con-
tinuous bag-of-word model [23] on a set of user-generated playlists.
In short, the model learns 40-dimensional real-valued unit-norm
embedding for each track, such that two tracks that are likely to
co-occur in a playlist are close to each other in the embedding
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space, and vice-versa. The similarity between two tracks can then
be computed simply by using the cosine similarity between their
embeddings. The specific embedding space that we use has previ-
ously been shown to work well for music recommendation [22].

It should be noted that, in principle, track embeddings and user
embeddings could be learned jointly. By decoupling the two, we sim-
plify the development of multiple models with different goals and
improve the scalability of our approach, as discussed in Section 1.

3.3 Session Embedding
The way we represent sessions builds on the track embedding
model. In fact, we represent a session simply as an average of
the embedding of the tracks it contains. The assumption is that,
within a session, tracks cluster around a small region of the em-
bedding space,4 and as such the average track embedding provides
a compact summary of the session’s content. We consider three
embedding variants for a given session t , all normalized to unit
length: st represents the average of all tracks, while s+t and s−t
represent the average of played and skipped tracks, respectively.
Considering played and skipped tracks separately provides a more
detailed picture of session-level user preferences.

Our definition of session embedding is computationally-efficient:
if we also model user preferences by using a unit-norm vector in
the same embedding space (as we do in Section 5), we can compute
the cosine similarity to a given session’s embedding using a dot
product. Due to the distributive property of the dot product, the
result can be thought of as the average relevance of each track to
the user—all using a single dot product.

Finally, we note that, for long sessions, it is no longer clear
whether the context stays constant throughout its duration, and
whether the tracks played at the end of the session are related to
the ones at the beginning. For this reason, we deliberately consider
only the first 10 tracks within a session (equal to the average session
length), and discard the rest. We are thus effectively understanding,
modeling and predicting the beginning of a session.

4 EXPLORATORY ANALYSES
In this section, we demontrate the need for contextual models by
studying the influence of context on music consumption. We aim
to answer the following sub-questions to RQ1, related to context in
music consumption:

4.1 How are sessions distributed according to context, and what
is the proportion of users experiencing each type of context?

4.2 Does music consumption vary depending on context?
4.3 How similar are sessions across and within different types

of contexts?
These questions provide empirical evidence for considering context
in music recommendation. Finally, we investigate how user satis-
faction relates to how different a session is from a user’s average
preferences (see Section 4.4)

4.1 Context Distribution Across Sessions
The majority of sessions, as shown in Figure 1, are happening in
the afternoon (12pm-5pm) and evening (5pm-8pm). The remaining
4We validate this assumption empirically using track and session ranking tasks in
Section 6.

(46.4%) of sessions are spread out over the remaining time contexts
of early morning (6am-9am), morning (9am-12am), late evening
(9pm-1am), and night (1am-6am). It is interesting to consider that
most users have sessions spanning all types of time contexts, except
for the night context, which relates to only 76.5% of users. For the
device context, we observe that 88.3% of sessions are happening
on mobile devices, 8.6% on desktop, and the remaining ones are
split across speaker, web, and tablet. However, similar to the time
context, a significant amount of users do have at least one session
in one or more of the non-mobile devices. These findings highlight
that users consume music across multiple contexts, and that even
minority contexts are important to consider, since a large number
of users do experience those at some point.

4.2 Music Consumption and Context
We investigate if diversity in music consumption depends on con-
text. We collect all tracks appearing in each specific context, and
compute the pairwise cosine similarities between tracks within
each context. Note that even minority contexts (such as web and
tablet) contain millions of plays, meaning that the distributions are
well captured for all contexts. Figure 2a illustrates the distributions
of pairwise similarities by using boxplots. For the time context, we
see that minority contexts, such as early morning and night, have
significantly larger variability compared to majority sessions such
as afternoon and evening. We observe a similar trend for the device
context for all non-mobile contexts compared to mobile. This sug-
gests that users have largely different needs in minority contexts,
and as such the user embedding needs to incorporate context in
order to reliably estimate user needs.

4.3 Session Similarity and Context
In the previous section, we performed a global analysis across all
tracks from every user within a specific context. Now, we analyse
if, for a given user, their sessions within the same context are more
similar across different contexts. For each user and each session
(the source), we find the nearest session (the target) among all the
user’s other sessions, and store both the source’s and the target’s
contexts. We then aggregate all the pairs and compute the empirical
distribution of the target’s context type, conditioned on the source’s
context type. To correct for the bias induced by the users’ distinctive
usage patterns (some users might use the service more in some
contexts than in others), we subtract from this distribution the
marginal probability of each pair of contexts (or, equivalently the
empirical distribution obtained when sampling source and target
uniformly at random among the same user’s sessions).

Figure 3 displays the result in the form of heatmaps. The pos-
itive diagonal tells us that sessions sharing the same context are
indeed more similar than sessions sampled at random. Additionally,
for time contexts, those occurring close to each other (e.g., night
and evening) also often have small positive values, indicating that
sessions even from consequent contexts are more similar than ran-
dom sessions. This analysis highlights that sessions with the same
context do share some similarities, which can be exploited to learn
better performing contextual user embeddings.
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Figure 1: Left: histograms of session context. Right: proportion of users with at least one session within a context.
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Figure 2: Left: boxplots showing the distribution of pairwise cosine similarity for all tracks occurring within each context.
Right: Pearson correlation and regression slope of the relation between skip rate and user-session cosine similarity.
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4.4 Contextual Preferences and Skip Rate
In the previous analyses we found evidence of context being useful
for providing amore accurate picture of users’ preferences. Now, we
consider the influence of a better match between user and session
embeddings (i.e., higher cosine similarity) on user satisfaction. As a
proxy for satisfaction, we measure the skip rate, i.e., the percentage
of skipped tracks within a session. For the purposes of this analysis,
we define the user embedding as an average of the embeddings of
all their previous sessions. For each session we record the cosine
similarity between the user embedding and the current session’s
embedding, as well as the skip rate of the session.

Figure 2b shows the Pearson correlation coefficient and regres-
sion slope between the skip rate and user-session cosine similarity,
as a function of the minimum skip rate. By considering sessions
with at least k skips (x-axis in the figure), we filter out sessions
with low activity, since a very low amount of skips may simply be
due to the user not being actively engaged. We observe that both
the correlation coefficient and regression slope are negative. This
means that, as users skip more often, the user-session similarity de-
creases. Additionally, both the correlation coefficient and regression
slope generally decrease the larger the minimum number of skips
is. We expect that, if we were able to anticipate these “unusual” ses-
sions (i.e., sessions that deviate significantly from a users’ average
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preference), we might be able to improve user satisfaction. As we
will demonstrate in the next sections, sequence and context-aware
models enable us to achieve that goal.

5 CONTEXTUAL AND SEQUENTIAL MODEL
The previous section established the importance of context for
understanding users’ behaviors. Building on these findings, we
now present CoSeRNN, a user-embedding model that captures
contextual and sequential preferences at the session level. The aim
is to predict, at the very beginning of a session (without observing
any explicit action from the user), which trackswill be played during
the session, based on features derived from the past consumption
history and the current context. Section 5.1 presents the architecture
of our model and Section 5.2 discusses the procedure we use to
train it.

5.1 Model Architecture
For conciseness, we consider a single user. For a given a session
index t , we denote the predicted session-level user embedding as
ut ∈ R40, and the observed (ground-truth) session embeddings
as s−t , s

+
t ∈ R40, as defined in Section 3.3. The model is trained

to maximize the similarity between ut and s+t (this will be made
precise in Section 5.2). A diagram of the architecture of our proposed
model, CoSeRNN, is provided in Figure 4. At a high level, CoSeRNN
modelsut as follows. It uses features about the current context (such
as time of the day and device) and features about the last session
as input to two RNNs, representing play and skip behavior. These
RNNs combine the input with a latent state, capturing sequential
dependencies in the user’s consumption habits. Finally, the outputs
of the two RNNs are combined and fused with a long-term user
embedding.

5.1.1 Notation. We denote a dense (fully-connected) neural net-
work layer by FCд(x) = д(Wx + b), whereW and b are a weight
matrix and a bias vector of suitable dimensions, respectively, and д
is an activation function. We consider three such functions, a) the
identity function id(x) = x , b) the elementwise rectifier ReLU(x) =
[max{0,xi }], and c) the softmax function softmax(x) = [expxi/

∑
j expx j ].

We denote by f ◦ д(x) the composition of f and д evaluated at x ,
i.e., f (д(x)), and by x ⊕ y the concatenation of the vectors x and y.

5.1.2 Input Layers. We start with two feature vectors,

f +t = ct ⊕ s+t−1 ⊕
[
Nt−1 zt−1 ∆t

]
f −t = ct ⊕ s−t−1 ⊕

[
Nt−1 zt−1 ∆t

]
where ct is a concatenation of one-hot encodings of the contextual
variablesDt ,Ht andYt , and all other symbols refer to Table 1. These
are input to the play and skip pathways of the network, respec-
tively. Prior to passing the features to the RNN, we apply a learned
nonlinear transformation. This enables the RNN to better focus
on modeling latent sequential dynamics. In particular, we apply
the following transformation: f̂ +t = FCReLU ◦ FCReLU(f

+
t ), which

corresponds to two fully connected layers with ReLU activations.
We obtain f̂ −t by applying the same transformation to f −t .

5.1.3 Recurrent Layers. Next, we seek to capture and reuse rele-
vant information from the user’s history—beyond the last session.

We do so by using an RNN with Long Short Term Memory (LSTM)
cells [16], and let (o+t ,h

+
t ) = LSTM( f̂ +t | o+t−1,ht−1), where o+t is

the output and h+t the hidden state.5 Similarly, we obtain (o−t ,h
−
t )

from f̂ −t . We learn to combine the outputs o+t and o−t , and then
obtain the sequence and context-dependent part of the user embed-
ding, ût , as

ot = FCReLU ◦ FCReLU(o
−
t ⊕ o+t ), ût = FCid(ot ).

5.1.4 Fusion with Long-termUser Embedding. A long-term, context-
independent embedding is able to explain the general preferences
of a user relatively well [22]. We build upon this observation, and
enable our RNNs to focus on learning session-specific deviations
from a long-term user embedding ūt , defined as a weighted average
of all previous session embeddings,

ūt ∝
t−1∑
t ′=1

t ′

t − 1
st ′ , (1)

normalized such that ∥ūt ∥ = 1. To fuse ūt and ût , we learn atten-
tion weights based on the RNN output, such that uncertain RNN
estimates can default to the long-term embedding. We compute the
attention weights and use those to produce the final user embedding
as ut = β̂t ût + β̄t ūt , where

[
β̂t β̄t

]
= FCsoftmax(ot ).

5.2 Training and Hyperparameter Tuning
To learn the parameters of the model, tune hyperparameters and
evaluate the performance of our model, we split the dataset of
Section 3 into training, validation and test sets, respectively. The
test set consists of all the sessions of the last two weeks of the
dataset, and the validation set of the 5 days prior to the beginning
of the test set.

5.2.1 Loss function & Optimization. Our model is trained to maxi-
mize the cosine similarity between the predicted embeddingut and
the observed one st . Because both embeddings are unit-norm, the
cosine similarity can be computed simply by using a dot product.
Formally, letting D be a training set consisting of pairs (i, t), where
i denotes the user and t the session, the loss function is defined
as ℓ =

∑
(i,t )∈D

(
1 − u⊤its

+
it
)
, where uit and s+it refer to the t-th

session of user i . We minimize ℓ using stochastic gradient descent
with mini-batches, and find that the Adam optimizer [18] works
well, converging in a few tens of epochs.

5.2.2 Hyperparameter Tuning. We use the validation set to tune the
learning rate λ ∈ {0.001, 0.0005, 0.0001}, LSTM cell sizes d ∈ {100,
200, 400}, and batch sizes m ∈ {128, 256, 512}, and keep fully
connected layers fixed to size 200. Optimal performance is achieved
by setting λ = 0.0005,d = 400,m = 256.

6 EXPERIMENTAL EVALUATION
We evaluate the predictive performance of our model on the music
sessions dataset described in Section 3. We first present competing
approaches (Section 6.1), then we describe two ranking tasks that
we use to evaluate our model (Section 6.2) and provide detailed
results (Section 6.3). Finally, we perform an ablation study and shed

5At t = 0, the hidden state is initialized using a learned embedding that depends on
the user’s age.
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Figure 4: Overview of the CoSeRNNmodel. Themodel captures users’ sequence-dependent and context-dependent preferences
using information available at the beginning of a session.

light on how the different components of our model contribute to
its predictive performance (Section 6.4).

6.1 Baselines
We evaluate the performance of several baselines and ground-truth
approaches. Our aim is to a) understand the various metrics we
consider in terms of lower-bounds (achieved by trivial models)
and upper bounds (ground-truth), and b) tease apart the impact
of modelling contextual and sequential effects. We consider the
following six baselines.

Last, any cxt This simple baseline predicts the current session em-
bedding using the vector of the last session (irrespective of
that session’s context), that is, s+t−1. The underlying assump-
tion is that the session vector does not depend on context
but that it may change quickly over time.

Last, same cxt Similar to the previous one, except that it uses the
vector of the last session whose context is identical to the
current one.

Avg, any cxt The current session is modeled as a weighted aver-
age of all past session vectors (irrespective of their contexts),
similarly to the long-term user embedding in Equation (1).

Avg, same cxt Consists of a weighted average of past sessions as
for the previous baseline, except that only sessions with a
context that is identical to the current one are considered.

Popularity The predicted current session vector is equal to that
of the past session containing the most popular tracks.

JODIE The state-of-the-art embedding prediction model of Kumar
et al. [21]. JODIE takes both contextual and sequential ef-
fects into account. To match our setup, we leave the track
embedding fixed (i.e., we use the existing pretrained embed-
dings), and use multiple RNNs to represent combinations of
all, skipped, and listened parts of the session (similarly to our
model). We also use the cosine distance as loss function, as
we found that using the ℓ2-loss (as presented in their paper)
obtained inferior results in our setting.

RRN The model of Wu et al. [35]. RRN learns to predict future
behavioral trajectories using contextual and sequential infor-
mation. We tune the parameters used in the original paper
and adapt it to our setting by changing the objective function
to be the same as that of CoSeRNN (see Section 5.2.1). We
replace the original rating prediction layer to have an output
of 40 (our embedding size) rather than 1 (their rating score).
Similar to JODIE, we leave the embedding of tracks fixed and
use multiple RNNs for representing all, skipped, and listened
parts of the session.

LatentCross Themodel of Beutel et al. [3]. LatentCross introduces
a method for modulating the state of an RNN model with
contextual features. We adapt it to our setting by changing
the objective function to be the same as that of CoSeRNN.
We also replace the final softmax layer originally used in
LatentCross with a feed forward layer of dimension 40 (our
embedding size). With this change, LatentCross can be used
to generate embedding predictions rather than individual
item predictions. Similar to JODIE and RRN, we leave the
embedding of tracks fixed, and allow LatentCross to use
multiple RNNs for representing all, skipped, and listened
parts of the session.

Architectural network choices aside, an important difference be-
tween our CoseRNN and the state-of-the-art baselines is in how
static (or long-term) user embeddings are combined with recurrent
neural network outputs. JODIE uses a static user embedding, RRN
learns a stationary user embedding per time step, and LatentCross
does not have any. In contrast, CoSeRNN computes a weighted
long-term user embedding grounded in a user’s actual past con-
sumption, such that the recurrent neural network can focus on
learning a sequence and context-dependent offset vector, which is
fused with the long-term user embedding using attention weights
(see Section 5 for further details).

In addition to these baselines, we also examine two oracle vari-
ants, to obtain a sense of the difficulty of the various predictive
tasks.
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Oracle Full The predicted session vector is exactly equal to the
(ground-truth) observed one.

Oracle Half The session vector is modeled as the average of half
of the tracks of the current session, selected uniformly at
random among all the tracks in the session. By using only
half of the tracks, it can be seen as a noisy version of Oracle
Full, and highlights the inherent variability inside a session.

6.2 Tasks & Metrics
As discussed in Section 5.2, our model is trained to maximize the co-
sine similarity between the predicted user embedding and observed
session embedding. While this loss is attractive from a computa-
tional standpoint (being differentiable and smooth), it is merely a
useful proxy to the real problem: producing better, more relevant
just-in-time recommendations. To assess whether our optimization
metric is indeed helping us solving that problem, we evaluate all
approaches on two additional tasks.

6.2.1 Session Ranking. The aim here is to measure how well a
given approach can discriminate the current session from previ-
ous ones. For a given session t , we consider the K session vectors
{s+t−K+1, . . . , s

+
t }. We rank these session vectors by decreasing co-

sine similarity with the predicted user embedding ut , and measure
the rank of st . For K ∈ {20, 50}, we report the mean reciprocal rank
(MRR) and the average rank.

6.2.2 Track Ranking. Here the aim is to measure how well a given
approach can predict the tracks that a user listens to in a given ses-
sion. Similarly to session ranking, this measures if the approaches
are able to adapt to the user’s current preferences, but where the
individual items are considered in contrast to an aggregated session
representation. Given a session t , we consider the set of K distinct
tracks a user has listened to most recently (across all previous ses-
sions). For K ∈ {25, 100}, we rank these tracks by decreasing cosine
similarity with the predicted vector ŝt and report the mean average
precision (mAP) and the average recall@10. If we are able to rank
tracks that are contained in the session highly, it means that we
can anticipate the user behavior well, e.g., by showing the relevant
tracks more prominently (or even start playing them directly).

Experimental Setup. We use the dataset described in Section 3
and the training procedure of Section 5.2. For all methods, when
predicting the user embedding of the t-th session, we use all the
data up to (but not including) session t .

6.3 Results
Table 2 presents the performance on the test set for the cosine-
similarity loss as well as for the various metrics used for the session
and track ranking tasks. CoSeRNN consistently outperforms the
baselines on all metrics across all tasks (all differences are statisti-
cally significant using a pairwise two-tailed t-test at the 0.001 level).
It is interesting to note that although there is a clear positive cor-
relation between cosine similarity and the other metrics, a higher
cosine similarity does not automatically imply better performance
on the ranking tasks.

The four models that are optimized on the cosine similarity
(RRN, LatentCross, JODIE, and CoSeRNN ) are clearly superior to
the simple heuristic baselines on both ranking tasks. Among all

simple baselines, it is worth noting that Last, any cxt generally
performs the best (except on cosine and on session ranking for
K = 20), an indication that recency plays an important role in
music recommendation; we investigate this further in Section 6.4.
This also explains part of the performance gap from the simple
baselines to JODIE and CoSeRNN, as they are able to better capture
the recency aspect through recurrent neural networks.

The results up to now are averages over all users and test sessions.
We now seek to answer the question: does the performance vary
across contexts?We plot the relative improvement of CoSeRNN over
JODIE (the state-of-the-art approach) in Figure 5. For conciseness,
we only consider a subset of the metrics, and use K = 50 and K =
100 for the session and track ranking tasks, respectively. Generally,
the improvements are consistent across all contexts. Interestingly,
some of the contexts that occur infrequently see a comparatively
larger relative improvement, such as for the web or—to a smaller
extent—night contexts.

6.4 Ablation Study
We focus on the empirical performance of CoSeRNN and seek to
understand how different choices affects themodel, which we ablate
in two different ways: 1) by varying the features given as input
to the model, and 2) by processing played and skipped tracks in
different ways.

6.4.1 Input Features. We divide features given as input to our
model into five groups: the embeddings of the last session s+t and
s−t , the current context ct , the number of tracks in the last session
Nt−1, the time (in seconds) elapsed since the last session ∆t , and
the stream source of the last session zt−1. Additionally, we consider
a hypothetical scenario6 where we have access to the stream source
of the current session, zt .

The performance of the corresponding models on the cosine
similarity and track ranking tasks is given in Table 3. The current
session context is associated with the biggest increase in cosine
similarity, which is to be expected as context is highly indicative
of the content in a session (as seen in Section 4). In addition, infor-
mation about the previous session significantly helps improving
performance, particularly on the track ranking task. If, in addition
to knowing a user device and the time of the day, we know which
stream source they intend to stream from, our model predictive
performance increases substantially.

6.4.2 Listened vs. Skipped Tracks. The final architecture of our
model partitions tracks in a session into two subsets, played tracks
and skipped tracks. To better understand the impact of this partic-
ular choice, we compare our model to three alternative variants.
The first one does not distinguish between played and skipped
tracks, and instead considers the average embedding of all tracks in
the session. The second one disregards skipped tracks completely
and focuses only on played tracks. The last one considers played
and skipped tracks separately, but also adds in another RNN path-
way that considers the average of all tracks. Table 4 displays the
performance attained by each model.

6This scenario assumes that we are given partial information about the user intent in
the current session. This assumption is realistic in practice, but the trade-off is that we
cannot present recommendations immediately at app launch time.
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Table 2: Empirical performance of various session-prediction approaches on amusic dataset. Best result is highlighted in bold
(all differences are statistically significant at the 0.001 level using a paired two-tailed t-test).

Session ranking Track ranking

K = 20 K = 50 K = 25 K = 100

Model Cosine MRR Rank MRR Rank mAP Rec@10 mAP Rec@10

Last, any cxt 0.6527 0.1721 10.0767 0.1133 21.9245 0.3585 0.4394 0.1300 0.1372
Last, same cxt 0.5990 0.2094 9.3128 0.1009 23.5288 0.3398 0.4223 0.1154 0.1156
Avg, any cxt 0.6797 0.1835 10.0882 0.1034 23.7337 0.3485 0.4250 0.1225 0.1291
Avg, same cxt 0.6609 0.2087 9.3365 0.1031 23.4767 0.3476 0.4313 0.1199 0.1239
Popularity 0.4278 0.2012 9.5670 0.0967 24.0233 0.3457 0.4338 0.1165 0.1190

RRN [35] 0.6918 0.1970 9.6689 0.1286 21.2980 0.3794 0.4678 0.1425 0.1594
LatentCross [3] 0.6921 0.1967 9.6669 0.1286 21.2610 0.3794 0.4678 0.1422 0.1592
JODIE [21] 0.6970 0.2079 9.3438 0.1303 21.2258 0.3836 0.4734 0.1450 0.1638
CoSeRNN (ours) 0.7115 0.2319 8.6642 0.1507 19.5288 0.4011 0.4981 0.1574 0.1816

Oracle half 0.7077 0.4723 5.2294 0.3711 11.3131 0.7732 0.8052 0.5824 0.6163
Oracle full 1.0000 0.9985 1.0067 0.9988 1.0068 0.8323 0.8861 0.6220 0.6951

mob
ile

desk
top

spea
ker web tabl

et
0

5

10

15

20

25

%
im

pr
ov
em

en
t

earl
y m

orn
ing

mor
ning

afte
rno

on
even

ing

late
even

ing nigh
t

cosine sim.
MRR

mAP
recall@10

Improvement over JODIE

Figure 5: Improvement of CoSeRNN over JODIE. We compute MRR for K = 50 and mAP and recall@10 for K = 100.

Table 3: Performance of CoSeRNN model variants with ac-
cess to increasing subsets of input features.

Track ranking (K = 100)

Features Cosine mAP Recall@10

Last sess. embeddings 0.7062 0.1518 0.1731
+ curr. context 0.7091 0.1527 0.1748
+ # tracks in last 0.7103 0.1569 0.1807
+ time since last 0.7109 0.1569 0.1808
+ last stream source 0.7115 0.1574 0.1816
+ curr. stream source 0.7313 0.1777 0.2100

Separating played tracks from skipped tracks is clearly beneficial
to model performance. Interestingly, considering skipped tracks in
addition to played tracks does bring some performance benefits.
Even though the performance benefit is small, this does highlight
the dissimilarities between a user skipped and listened tracks, and it
helps to improve the model capabilities of understand a user music
preferences. Finally, considering the union of played and skipped

Table 4: Performance of four CoSeRNN model variants that
encode the session in different ways.

Track ranking (K = 100)

Session encoding Cosine mAP Recall@10

All 0.6966 0.1442 0.1623
Plays 0.7103 0.1567 0.1801
Plays + skips 0.7115 0.1574 0.1816
Plays + skips + all 0.7114 0.1569 0.1809

tracks in addition to the two partitions is unnecessary and does not
improve performance.

7 CONCLUSION
In this work, we consider the task of learning contextual and se-
quential user embeddings suited for music recommendation at the
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beginning of a session. To this end, we first perform multiple ex-
ploratory analyses, gaining a better understanding of how sessions
are distributed according to context, howmusic consumption varies
depending on context, and how context correlates with the tracks
within a session. We find that most users experience a diversity of
contexts (even though some occur more frequently than others),
that sessions belonging to rarely occurring contexts vary the most
(in terms of contents), and that sessions with the same context have
more similar content.

Driven by these findings, we present CoSeRNN, a recurrent neu-
ral network embedding model that learns the sequential listening
behaviour of users, and adapts it to the current context. CoSeRNN
does this through the combination of a) a global long-term em-
bedding that captures a user’s long-term music preferences, and
b) a sequence and context-dependent offset. In contrast to prior
methods that require expensive model evaluations to produce rec-
ommendations, the approach taken by CoSeRNN enables efficiently
generating recommendations by using fast approximate nearest
neighbour searches. When evaluated empirically on a large-scale
dataset of sessions, CoSeRNN outperforms baseline and state-of-
the-art embedding-based approaches by upwards of 10% in session
and track recommendation tasks. In future work, hashing-based
embedding approaches would be interesting to investigate in our
setting, as existingwork on content-aware recommendation [12, 39]
and similarity search [11, 13, 32] have shown hashing-based ap-
proaches to allow large efficiency gains at the cost of a marginal
effectiveness reduction.

REFERENCES
[1] A. Anderson, R. Kumar, A. Tomkins, and S. Vassilvitskii. 2014. The dynamics

of repeat consumption. In international conference on World wide web. ACM,
419–430.

[2] Y. Bachrach, Y. Finkelstein, R. Gilad-Bachrach, L. Katzir, N. Koenigstein, N. Nice,
and U. Paquet. 2014. Speeding up the xbox recommender system using a euclidean
transformation for inner-product spaces. In Conference on Recommender systems.
ACM, 257–264.

[3] A. Beutel, P. Covington, S. Jain, C. Xu, J. Li, V. Gatto, and E. H. Chi. 2018. Latent
cross: Making use of context in recurrent recommender systems. In International
Conference on Web Search and Data Mining. 46–54.

[4] G. Bonnin and D. Jannach. 2014. Automated generation of music playlists: Survey
and experiments. ACM Computing Surveys (CSUR) 47, 2 (2014), 1–35.

[5] B. Brost, R. Mehrotra, and T. Jehan. 2019. The Music Streaming Sessions Dataset.
In The World Wide Web Conference. ACM, 2594–2600.

[6] T. Cebrián, M. Planagumà, P. Villegas, and X. Amatriain. 2010. Music recommen-
dations with temporal context awareness. In Conference on Recommender systems.
ACM, 349–352.

[7] J. Chen, C. Wang, and J. Wang. 2015. Will you" reconsume" the near past? fast
prediction on short-term reconsumption behaviors. In Conference on Artificial
Intelligence.

[8] S. Chen, J. L. Moore, D. Turnbull, and T. Joachims. 2012. Playlist prediction
via metric embedding. In Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining. 714–722.

[9] H. Dai, Y. Wang, R. Trivedi, and L. Song. 2016. Deep coevolutionary net-
work: Embedding user and item features for recommendation. arXiv preprint
arXiv:1609.03675 (2016).

[10] E. Frolov and I. Oseledets. 2017. Tensor methods and recommender systems.
Interdisciplinary Reviews: DataMining and Knowledge Discovery (2017).

[11] C. Hansen, C. Hansen, J. G. Simonsen, S. Alstrup, and C. Lioma. 2019. Unsu-
pervised Neural Generative Semantic Hashing. In Proceedings of the 42nd In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. 735–744.

[12] C. Hansen, C. Hansen, J. G. Simonsen, S. Alstrup, and C. Lioma. 2020. Content-
Aware Neural Hashing for Cold-Start Recommendation. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information

Retrieval. 971–980.
[13] C. Hansen, C. Hansen, J. G. Simonsen, S. Alstrup, and C. Lioma. 2020. Unsuper-

vised Semantic Hashing with Pairwise Reconstruction. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 2009–2012.

[14] N. Hariri, B. Mobasher, and R. Burke. 2012. Context-aware music recommenda-
tion based on latenttopic sequential patterns. In Proceedings of the sixth ACM
conference on Recommender systems. 131–138.

[15] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. 2016. Session-based recom-
mendations with recurrent neural networks. (2016).

[16] S. Hochreiter and J. Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735–1780.

[17] M. Kaminskas, F. Ricci, and M. Schedl. 2013. Location-aware music recommen-
dation using auto-tagging and hybrid matching. In Conference on Recommender
systems. ACM, 17–24.

[18] D. P. Kingma and J. Ba. 2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014).

[19] Y. J. Ko, L. Maystre, and M. Grossglauser. 2016. Collaborative Recurrent Neural
Networks for Dynamic Recommender Systems. In ACML, Vol. 63.

[20] Y. Koren, R. Bell, and C. Volinsky. 2009. Matrix Factorization Techniques for
Recommender Systems. Computer 42, 8 (Aug. 2009), 30–37.

[21] S. Kumar, X. Zhang, and J. Leskovec. 2019. Predicting dynamic embedding trajec-
tory in temporal interaction networks. In International Conference on Knowledge
Discovery & Data Mining. ACM, 1269–1278.

[22] R. Mehrotra, J. McInerney, H. Bouchard, M. Lalmas, and F. Diaz. 2018. Towards a
fair marketplace: Counterfactual evaluation of the trade-off between relevance,
fairness & satisfaction in recommendation systems. In International Conference
on Information and Knowledge Management. ACM, 2243–2251.

[23] T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781 (2013).

[24] M. Park, J. Thom, S. Mennicken, H. Cramer, and M. Macy. 2019. Global music
streaming data reveal diurnal and seasonal patterns of affective preference. Nature
Human Behaviour 3, 3 (2019), 230.

[25] M. J. Pazzani and D. Billsus. 2007. Content-based recommendation systems. In
The adaptive web. Springer, 325–341.

[26] T. F. Pettijohn, G. M. Williams, and T. C. Carter. 2010. Music for the seasons:
seasonal music preferences in college students. Current Psychology 29, 4 (2010),
328–345.

[27] M. Quadrana, P. Cremonesi, and D. Jannach. 2018. Sequence-aware recommender
systems. ACM Computing Surveys (CSUR) 51, 4 (2018), 1–36.

[28] S. Raza and C. Ding. 2019. Progress in context-aware recommender systems—an
overview. Computer Science Review 31 (2019), 84–97.

[29] P. Ren, Z. Chen, J. Li, Z. Ren, J. Ma, and M. de Rijke. 2019. RepeatNet: A repeat
aware neural recommendation machine for session-based recommendation. In
Conference on Artificial Intelligence, Vol. 33. 4806–4813.

[30] M. Schedl, H. Zamani, C.-W. Chen, Y. Deldjoo, and M. Elahi. 2018. Current
challenges and visions in music recommender systems research. Journal of
Multimedia Information Retrieval (2018), 95–116.

[31] G. Shani, D. Heckerman, and R. I. Brafman. 2005. An MDP-based recommender
system. Journal of Machine Learning Research (2005), 1265–1295.

[32] D. Shen, Q. Su, P. Chapfuwa, W. Wang, G. Wang, R. Henao, and L. Carin. 2018.
NASH: Toward End-to-EndNeural Architecture for Generative Semantic Hashing.
In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 2041–2050.

[33] A. Vall, M. Quadrana, M. Schedl, G. Widmer, and P. Cremonesi. 2017. The
Importance of Song Context in Music Playlists.. In RecSys Posters.

[34] S. Wang, L. Cao, and Y. Wang. 2019. A survey on session-based recommender
systems. arXiv preprint arXiv:1902.04864 (2019).

[35] C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing. 2017. Recurrent rec-
ommender networks. In International conference on web search and data mining.
ACM, 495–503.

[36] S. Zhang, Y. Tay, L. Yao, and A. Sun. 2018. Next Item Recommendation with
Self-Attention. ArXiv abs/1808.06414 (2018).

[37] S. Zhang, L. Yao, A. Sun, and Y. Tay. 2019. Deep Learning Based Recommender
System: A Survey and New Perspectives. ACM Comput. Surv. 52, 1 (2019).

[38] Y. Zhang, H. Dai, C. Xu, J. Feng, T. Wang, J. Bian, B. Wang, and T.-Y. Liu. 2014.
Sequential click prediction for sponsored search with recurrent neural networks.
In Conference on Artificial Intelligence.

[39] Y. Zhang, H. Yin, Z. Huang, X. Du, G. Yang, and D. Lian. 2018. Discrete Deep
Learning for Fast Content-Aware Recommendation. In Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining. 717–726.

[40] A. Zimdars, D. M. Chickering, and C. Meek. 2001. Using temporal data for making
recommendations. In Conference on Uncertainty in artificial intelligence. Morgan
Kaufmann Publishers Inc., 580–588.

62


	Abstract
	1 Introduction
	2 Related Work
	2.1 Music Recommendation

	3 Dataset
	3.1 Session-Level Information
	3.2 Track Embedding
	3.3 Session Embedding

	4 Exploratory Analyses
	4.1 Context Distribution Across Sessions
	4.2 Music Consumption and Context
	4.3 Session Similarity and Context
	4.4 Contextual Preferences and Skip Rate

	5 Contextual and Sequential Model
	5.1 Model Architecture
	5.2 Training and Hyperparameter Tuning

	6 Experimental Evaluation
	6.1 Baselines
	6.2 Tasks & Metrics
	6.3 Results
	6.4 Ablation Study

	7 Conclusion
	References

