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ABSTRACT
With over 20,000 tracks being released each day, recommendation
systems that power music streaming services should not only be
responsive to such large volumes of content, but also be adept at
understanding the impact of such new releases on, both, users’ lis-
tening behavior and popularity of artists. Inferring the causal impact
of new track releases is critical to fully characterizing the interplay
between artists and listeners, as well as among the artists. In this
study, we infer and quantify causality using a diffusion-regression
state-space model that constructs counterfactual outcomes using a set
of synthetic controls, which predict potential outcomes in absence
of the intervention. Based on large scale experiments spanning over
21 million users and 1 billion streams on a real world streaming plat-
form, our findings suggest that releasing a new track has a positive
impact on the popularity of other tracks by the same artist. Interest-
ingly, other related and competing artists also benefit from a new
track release, which hints at the presence of a positive platform-effect
wherein some artists gain significantly from activities of other artists.

CCS CONCEPTS
• Information systems → Recommender systems.
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1 INTRODUCTION
The music content generated on streaming platforms such as Spotify
or Pandora generally come from a wide variety of artists whose tracks,
once launched, are listed on the streaming service and is gradually
diffused to a large number of listeners. Thus, the launch of a new
music track not only increases the visibility and discovery of the
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artist whose track is released, but also boosts overall engagement for
the platform itself. For instance, whenever Akon, an American singer,
launches a new track, it attracts some first time Akon-listeners to dis-
cover and search for his songs, which increases the artist’s popularity.
Indirectly, listeners often end up spending more time on the music
platform, thereby increasing the chances of discovering other similar
artists, and improving their overall engagement with the platform.
It is therefore increasingly critical that music recommendation sys-
tems on these platforms take into account, and are prepared to deal
with the potential changes in consumption preferences and platform
engagement that accompany such track releases. With over 10,000
songs released per day globally1, inferring the causal impact of a new
track release on listener behavior is likely to become an important
consideration in the design of such recommendation systems, as well
as other demand forecast tools for artists.

Inferring causal impact, as opposed to merely analyzing signifi-
cant correlations, is important as causal inference models help shed
light on the underlying mechanisms that potentially drive these cor-
relations. However, estimating the impact of a new track release on
overall listener engagement with the focal artist, and other similar
artists is a challenging empirical problem. It is not trivial to derive
unbiased causal estimates in this context due to practical limitations
in running randomized experiments, absence of counterfactual data,
and limitations with obtaining fine-grained usage data. In our study,
we address these limitations by leveraging a large-scale music ac-
tivity dataset, and a quasi-experimental Bayesian framework that
quantifies the effect of a treatment (i.e. track release) on an outcome
of interest - artist stream counts, in this case. The causal impact of
the intervention can then be estimated as the difference between the
observed outcome and the unobserved or potential outcome, had the
users not been treated (i.e. not exposed to a new track release).

We adopt a Bayesian and structural time-series modeling strategy
to assess the causal impact of a new track release on the popularity
of the focal artist (i.e. artist who released a track) as well as other
similar artists. The proposed diffusion-regression state-space model
constructs a counterfactual artist popularity outcome using a set
of synthetic controls, that predict the potential outcome in absence
of any intervention. Based on the analysis of music streaming data
from over 21 million users, we investigate the impact of a new track
launch on (i) the engagement for the focal artist, (ii) the engagement
of similar artists, and (iii) the interplay between the engagements
for the focal and similar artists. We show that new track releases
significantly improve listener engagement for the focal artist. We
also find robust evidence for a platform-effect, wherein an increased

1http://www.nielsen.com/us/en/press-room/2017/nielsen-releases-2016-us-year-end-
music-report.html
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popularity of the focal artist results in an increased engagement for
other similar artists. We discuss future research directions stemming
from the findings presented in this work.

2 RELATED WORK
Prior research on music understanding and consumption has focused
on automated playlist generation from user listening patterns [4],
role of personality traits in predicting music taxonomy preferences
[9], understanding users’ music listening needs and intents [9, 14],
user’s consumption diversity of music [1], the interplay between user
and artist objectives [15, 16] and the impact of adoption of online
streaming on music consumption [8]. The studies in this area help us
hypothesize about the various factors that might influence a listener’s
decision to engage with a particular artist and track.

Forecasting trends in access to information, as well as modeling
and predicting popularity in user generated content has important
applications in many emerging areas, such as support facilitation,
advertising, content caching, price estimations, traffic management,
as well as financial and economic forecasting. Prior work has ex-
ploited correlation in content views over time [6, 18], survival anal-
ysis [11, 12], linear regression models [2, 3, 20], entropy measure
based on the "user-interest peak" and the "co-participatory network"
[10] to predict content popularity.

Advancements in causal inference modeling have led to the emer-
gence of new methods for causal structure learning and predictions
(i.e., predicting the aftermath of interventions). In prior studies,
causal relationships among related time series have been modeled us-
ing Granger causality approaches [19], lagged correlation [13], and
Bayesian networks [22], among others. A variety of causality mining
techniques have been studied in past work for content popularity in
social media, including Granger causality based influence model for
Twitter [7], Granger graphical models for anomaly detection [17]
and state-space diffusion regression models to predict counterfactual
market response [5], which forms the basis of the current method.

3 ESTIMATING CAUSAL IMPACT
Each new track release brings user traffic to music streaming plat-
forms. This increased user engagement often results in users ex-
ploring music by the same artist and other similar artists. Next, we
describe the proposed model used to infer such causal estimates.
Here, track is a song or recorded music by an artist; focal artist is
the main artist who has released a new track; and similar artists are
artists similar to the focal artist in terms of their genre-profiles.

3.1 Causal Impact Model
To infer the causal impact of a track release on the music consumption
attributable to an artist, we model the music consumption behavior
over time as a structural state-space model [5]. A state-space model
specifies the various states of the model and the associated repre-
sentations. State-space models are particularly useful in practice on
account of their flexibility and modularity. The latent spaces com-
prising the state-space model are essentially composed of a library of
sub-models that help to model the important attributes of the context.
In our case, this flexibility enables us to capture trend, seasonality
or other domain specific effects. We define this state-space model as

follows:
yt = ZTt αt + ϵt (1)

αt+1 = Ttαt + Rtηt (2)
The first equation is the observation equation, and models the ob-
served scalar variable yt as a function of a latent d-dimensional state
vector αt . The second equation specifies the evolution of this state
vector αt over time. ϵt ∼ N (0,σ 2

t ) and ηt ∼ N (0,Qt ) are indepen-
dent of all other unknowns. In our track release problem setting,
yt specifies the number of streams from a given artist on a given
day, Zt is a d-dimensional output vector, Tt is a d x d transition
matrix, and Rt is a d x q control matrix. Any observation error is
captured by ϵt , while ηt is a q-dimensional system error with a q
x q state-diffusion matrix Qt , where q ≤ d. We assume the error
terms from these state-component models to be independent. αt can
subsequently be estimated by concatenating the state components.
The most important state component for deriving causal estimates
is the regression component, which leverages music consumption
that was not treated i.e., not impacted by the new track release, to
create an artificial or synthetic control group, which in turn serves as
a quasi-counterfactual in the estimation of the treatment effect. We
next describe the different state components that we specify in the
causal inference model.

3.2 State Components
Prior research on music understanding and consumption has focused
on automated playlist generation [4], role of personality traits in pre-
dicting music taxonomy preferences [9], understanding users’ music
listening needs [9] and the impact of adoption of online streaming on
music consumption [8]. These studies point to two prominent factors
that might influence a listener’s decision to engage with a particular
artist and track - local trends and seasonality. We model such factors
as different state components.

Local Trend. Often the popularity of an artist follows a local trend,
owing to a sudden increased interest in the artist among listeners.
The local linear trend component of our model, as shown below,
allows us to model changes attributable to any such local shocks to
the context. This enables us to make accurate short-term and local
predictions.

µt+1 = µt + ηµ,t (3)
δt+1 = δt + ηδ,t (4)

where ηµ,t ∼ N (0,σ 2
µ ) and ηδ,t ∼ N (0,σ 2

δ ). The µt component cap-
tures the trend at time t , while the δt captures the expected increase
in µ from t to t + 1.

Seasonality. Music listening patterns often follow seasonal trends,
like day-of-the-week trend, or weekend trend, e.g. [21]. To allow
the model to incorporate such seasonal variations, we include a
seasonality component in our state component as follows:

λt+1 = −

S−2∑
s=0

λt−s + ηλ,t (5)

where S and λt capture the number of periods as well as their joint
contributions to the observed outcome yt , respectively.
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Contemporaneous Covariates. We use a set of control time series
that received no treatment for making accurate counterfactual predic-
tions since they account for any shared variance across the predictor
time-series, and help to control for the effects of any unobserved
sources of variance. We incorporate such control series in the model
using a simple linear regression, whose variables can be time-varying
or time-invariant.

3.3 Spike-and-Slab Prior for Synthetic Control
The counterfactual is constructed by concatenating a set of selected
predictor series into a single synthetic control [5]. The estimator
then selects from a collection of such potential controls, by apply-
ing a spike-and-slab prior on the set of regression coefficients. The
estimator then averages over this set of controls. The use of a spike-
and-slab as a prior is important as it combines the point mass at zero
(hence, the "spike"), for a certain subset of zero coefficients, with a
weakly informative distribution on a complementary set of non-zero
coefficients (hence, the “slab").

Let ρ = (ρ1, ..., ρ J ), where j = 1 if βj = 0, and 0 otherwise. Also,
let βρ denote the non-zero elements of β and

∑−1
ρ denote those

entries of
∑−1 that correspond to the non-zero entries in ρ. We then

factorize the prior as:

p(ρ, β ,
1
σ 2
ϵ
= p(ρ)p(σ 2

ϵ |ρ)p(βρ |ρ,σ
2
ϵ ) (6)

In the above, the spike is, in principle, an arbitrary distribution over
(0, 1)J . A possible and common choice here is a simple product
of Bernoulli distributions. For the “slab," it is common to use a
conjugate normal-inverse Gamma distribution.

3.4 Estimation of Causal Impact
We draw on [5] to adapt a Bayesian model of causal inference. We
specify a prior distribution p(θ ) , and a distribution p(α0 |θ ) on the
initial state values. Next, we perform a MCMC sampling of p(α ,θ |y).
While most similar Bayesian models make inference based on the
posterior distribution over parameters and states p(θ ,α |y1:n ), we
infer the causal estimates following the posterior incremental effect
as shown below:

p(y∗n+1:m |y1:n ,X1:m ) (7)
As is evident, the density above is defined for the span of time period
for which the outcomes are unobserved. This serves to capture the
true counterfactual i.e. count of artist stream that would be observed
in the treated artists’ streams following the intervention, but in the
absence of any intervention.

We then sample from the posterior distribution over counterfactual
activity to generate a statistic of the posterior causal effect, i.e. our
main estimate of interest. For each draw τ and time point t = n +
1, ...,m, we set

ϕt (τ ) := yt − y
∗(τ )
t (8)

This samples from the approximate posterior predictive density of
the intervention. In addition to the point-wise impact, it is important
to compute a cumulative impact estimate of this intervention over
time, which can be computed as:

1
t − n

t∑
t 1=n+1

ϕ
(τ )
t 1 ∀t = n + 1, ...,m (9)

In the next section, we report estimation results using a large and
real-world dataset of track release and music consumption behavior
over time.

4 EXPERIMENTS
The Bayesian structural model described in the previous section
allows us to estimate the causal impact of a new track release on
the popularity of the focal and related artists. To derive such causal
estimates, and as mentioned earlier, we leverage a large scale music
consumption dataset from a commercial music streaming service,
and consider all new tracks released in the month of December 2018
by the top 5000 most popular artists. In addition, we monitor music
consumption behavior of a sample of 21 million users and over 1.4
billion streams. We apply our proposed model to the track and artist
stream behavior before and after the release of a new track, with the
per-day stream count as the outcome variable.

Inferring Causal Impact of Track Release. Figure 1(left) illustrate
the distribution of point estimates for the relative intervention effect,
and the cumulative post-intervention effect, for a highly popular fo-
cal artist. The first panel on the left contrasts the observed stream
counts (solid line) against the counterfactual prediction of the stream
count (dashed line) in the period following the intervention. The
counterfactual prediction (dashed-line) indicates the stream count
had the new track not been released. The difference between these
two indicates that a new track release resulted in increased stream
counts for this artist. The second panel (Figure 1(Left)) plots this
point-wise causal estimate of the intervention, defined as the differ-
ence between observed stream count and the counterfactual in the
post-intervention period. We observe that the track release caused an
increase in artist’s music stream count, which subsided after a few
days. The third panel (Figure 1 left) presents a cumulative effect of
the intervention, obtained by adding up the point-wise estimates in
the period following the intervention. We observe that the new track
release caused a steady and cumulative increase in the total stream
counts. Figure 1 (right) shows the point-wise causal estimate and the
cumulative causal effect of the intervention for a less popular artist.
We observe that while this artist also experienced a surge in stream
count following the release of a new track, there is a significant delay
before it reached peak popularity.

Quantifying Impact on Streaming Popularity. We applied the
same causal effect model to ∼300 artists, who had at least one track
launch within our study period. We estimated our model to quantify
the gain/loss in streaming popularity following the new track release.
Figure 2 (left) denotes the point estimates of the causal effect at
the 10% level of significance. We can find artists with both, a sta-
tistically significant increase and a decrease in stream counts in the
post-intervention period after subtracting the corresponding stream
counts in the counterfactual time series. However, while most of the
negative estimates are clearly clustered around 0, positive estimates
have a larger variance with some exceeding 100%. This shows that
releasing a new track contributes positively to the stream count for
an artist by drawing attention of the listeners.
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(a) Effect on Focal Artist (b) Effect on Less Popular Artist

Figure 1: Heterogeneity in treatment effect of new track release. Left: Estimating the treatment effect for the focal artist. Right:
Estimating the treatment effect for a less popular artist. For both figures, the first panel plots the data together with the counterfactual
predictions following the track release. The second panel plots the point-wise treatment effect i.e. the difference between observed
data the and counterfactual predictions. The third panel plots the cumulative effect of the point-wise treatment effect over time in the
post-release period.

(a) Relative impact on Focus Artists (b) Relative impact on Related Artists (c) Relative Differences

Figure 2: Relative impact of track launch on focal artist (Left) and related artist (Middle). X-axis represents estimated causal effect,
with a value of 1 denoting a 100% increase. Right: Relative difference in the causal impact of a new track release on focal vs related
artists.

Causal Impact on Related Artists. We next investigate if track
launches tend to affect listening rates of similar artists. To study this
spill-over effect on the streaming counts of other similar artists, we
used a measure of artist similarity based on their music genre-profiles.
For each artist, we picked the top similar artists, and studied the time
series perturbations of stream counts of these similar artists in the
post-intervention period. Figure 2 (middle) illustrates the distribu-
tion of point estimates of the causal effect for the total set of ∼3100
similar artists at 10% level of significance. We can see that the launch
of the music track introduces both positive and negative externalities
for the related artists. However, as evident from Figure 2, we find a
significant and positive change for most of the related artists, with
some related artists experiencing an increase of over 100% in their

stream counts.

Relative Differences between Focal & Related Artists. Our results
show that a track release can positively affect artist popularity, and
also lead to positive externality for other similar artists. However, it
is also important to understand how these benefits for the focal artist
compare against the benefits to the artist’s similar peers. Figure 2
(right) illustrates the distribution of the difference between the causal
effects of 87 focal artists (i.e. a set of focal artists with statistically
significant casual effect at 10% level of significance) and the average
of causal effects of their peers. We find that, for most artists, the
benefits are equally shared by the focal artist and their peers. However,
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we also find evidence of focal artists benefiting more than their peers,
as well as of peers benefiting more than the focal artist.

5 DISCUSSION
Our findings indicate that new track releases are an important event
not just for the focal artist but also for other artists, who might benefit
by virtue of being on the streaming platform. This is probably due to
the increased tendency of music lovers to explore and discover other
albums and artists related to the newly released track. It was also
insightful to note that artists with varying platform popularity exhibit
different trajectories in stream count growth following the release
of major tracks, with less popular artists taking longer to reach peak
stream counts. We contend that music recommendation systems need
to be better aware of such heterogeneities in consumption patterns
following major events on the platform, to allow less popular or niche
artists to also benefit from the event.

Most music streaming platforms have recommendation systems
that help in facilitating the music discovery process. The findings
from this paper highlight the need to look at ways to increase salience
of focal artists to surface them to users and consequently improve
the discovery and engagement of related genres and artists. Spe-
cific future directions for this study include: (i) developing models
to estimate and improve user retention on streaming platforms by
leveraging such release events, (ii) designing new ways of improving
visibility of popular artists, while also promoting the right set of
related genres and artists.

As mentioned above, we also shed light in this paper on con-
sumer behavior following popular track releases. By observing the
perturbations in stream counts following the launch, we can begin to
formulate ideas about how audiences react to new music, in terms of
engagement, discovery and overall satisfaction. Our analyses show
that the audience reactions to new album launches might also be neg-
ative, and there are often various types of artist-level heterogeneities
that influence how audiences react to such events. Furthermore, some
users might get engaged with the platform only to interact with such
new track releases. Music recommendation systems of the future
need to be aware of these contextual dependencies. Future work can
leverage the findings and insights from this study to inform track
release strategies for artists, while improving recommendations for
listeners.
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