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ABSTRACT
Music streaming is inherently sequential in nature, with track se-
quence information playing a key role in user satisfaction with rec-
ommended music. In this work, we investigate the role audio char-
acteristics of music content play in understanding music streaming
sessions. Focusing on 18 audio attributes (e.g. dancability, acous-
ticness, energy), we formulate audio transitioning in a session as a
multiple changepoint detection problem, and extract latent states
of different audio attributes within each session. Based on insights
from large scale music streaming data from a popular music stream-
ing platform, we investigate questions around the extent to which
audio characteristics fluctuate within streaming sessions, the het-
erogeneity across different audio attributes and their impact on
user satisfaction. Furthermore, we demonstrate the promise of such
audio-based characterizing of sessions in better sequencing tracks
in a session, and highlight the potential gains in user satisfaction
on offer. We discuss implications on the design of track sequencing
models, and identify important prediction tasks to further research
on the topic.
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1 INTRODUCTION
Music streaming sessions are increasingly being shaped by algorith-
mically generated sequences, aimed at creating engaging, seamless,
and cohesive listening experiences for users. An ideal recommender
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system would not only recommend music that matches user pref-
erences, but sequence musical tracks in a way so as to make the
music "flow smoothly" from one song to the next. Sequencing tracks
has been regarded as “more of an art than a science” [5], with the
ordering of tracks and the quality of the transitions between them
being fundamentally linked: it can be very difficult to create an
enjoyable transition between songs that significantly differs in style,
tempo, or key.

Audio attributes of music content, e.g. danceability, energy, in-
strumentalness, help quantify and describe the acoustic character-
istics of the track. Such acoustic characteristics provide compli-
mentary information to the more commonly used organizational
(i.e. which tracks are present in a playlist) and consumption (i.e.
which users consume which content) information, and can be used
to understand how transitions in the audio attributes impact user
perception of recommended music. Indeed, transitioning between
a slow, smooth jazz piece and a high energy, fast electronic track,
for example, will likely feel awkward or unnatural and create an
abrupt change in the listening experience.

In this work, we focus on characterizing such transitions inmusic
streaming sessions and investigate their impact on user satisfaction,
based on a large scale analysis of music streaming sessions from
over 1 million users. We propose to treat each sequence of audio
feature values in a session as a time series and formulate audio
transitions as a changepoint detection task: events happen at a rate
that changes over time, driven by sudden shifts in the (unobserved)
state of some system or process generating the data. Within a ses-
sion, audio characteristics could stay relatively constant (i.e. in a
single state), or vary drastically across a session (i.e. fluctuate be-
tween multiple states). We model the latent states of each sequence
using Hidden Markov Models and propose a multiple changepoint
detection technique.

Quantifying such transitions across a session enables us to ana-
lyze streaming sessions at scale to answer a number of key research
questions. First, we begin by investigating how much and how com-
mon do audio characteristics change in listening sessions. Second,
we investigate how these variations differ across the 18 different
audio features. Third, we analyze how such variations are related
to user satisfaction metrics. Finally, we consider the task of track
re-ranking within sessions, to understand how we could use such
variations in audio characteristics to better sequence tracks.

We observe that audio attributes do change across tracks in
listening sessions, with over 95% sessions having at least one au-
dio feature with two or more states. Such fluctuations are fairly
common across all audio attributes. Moreover, we observe that
satisfying sessions have fewer state transitions than dissatisfying
sessions, with a high correlation between state transitions and track
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skips. Lastly, we highlight that leveraging such information about
state transitions holds promise, as it can help us improve key user
satisfaction metrics by over 10%. Our preliminary findings have im-
plications on the design of sequential recommendation techniques,
and we identify important prediction tasks as future work.

2 RELATEDWORK
A variety of features can be extracted from audio signals in tracks,
such as rhythmic, timbre or harmonic characteristics. These fea-
tures are used for multiple applications of Music Information Re-
trieval (MIR), including automatic genre classification and music
recommendation [14]. The idea of using the extracted features to
automatically generate listening experiences that flow seamlessly
between tracks by sequencing musical styles and matching tempos
have been explored in several works [2, 3, 8, 10, 15]. Tradition-
ally, multi-faceted scoring methods combining track co-occurrence
patterns, metadata and user preferences have been used in many
systems [7, 8, 11]. In order to recommend similar tracks, one also
need to develop measures of similarity between tracks, which have
led to works examining both acoustic and subjective approaches [1].
Other works include automatically identifying genres via machine
learning techniques [6], and through discovering latent structures
using Gaussian Mixture Models [13] or Convolutional Neural Net-
works [12].

3 TRANSITIONS IN AUDIO
CHARACTERISTICS ACROSS SESSIONS

We hypothesize that understanding how audio properties of tracks
change within a session, and their interplay with user satisfaction
can enable us to develop better track sequencing models. To this
end, we focus on characterizing transitions in audio attributes of
tracks across a large number of user sessions, and present a model to
extract "states" which an audio attribute can belong to in amusic ses-
sion, and leverage the extracted states information to characterize
music streaming sessions. We begin by stating key research ques-
tions we wish to address (Section 3.1), describe data context (Section
3.2), present the proposed state extraction model (Section 3.3), and
present findings in Section 4.

3.1 Key Research Questions
To better understand the interplay between variations in audio
characteristics of songs within a session, and user satisfaction, we
investigate the following research questions:

RQ1 How varied are audio properties of tracks within a session? We
investigate the extent of variations in audio characteristics
within sessions and highlight how common audio fluctua-
tions are (Section 4.1).

RQ2 How do variations in audio characteristics differ across the
different audio attributes? We investigate attribute level het-
erogeneity and highlight audio attributes which have higher
than average, and lower than average variations. We also
relate such differences to the general distribution of the at-
tribute (Section 4.2).

RQ3 Are variations in audio properties related to user satisfaction?
To gauge the interplay between such variations and user

satisfaction, we investigate the correlation between states
and state transitions with song skips (Section 4.3).

RQ4 Can insights about audio states help in track sequencing for
improved user satisfaction? We present preliminary results
on track re-ranking based on audio states information and
highlight the promise of such methods for developing better
track sequencing methods (Section 4.4).

3.2 Data Context
In order to answer the above questions, we use the Music Streaming
Sessions Dataset (MSSD) [4], which consists of 160 million listening
sessions gathered over an 8 week period on Spotify and associated
user interactions, audio features and metadata. Each session vary
between 10 to 20 tracks, where sessions longer than 20 tracks are
cut off. User interaction features provided include different types
of skips, forwards, pauses, etc. Each track also comes with several
metadata (popularity, duration, release year, etc) and various audio
attributes (e.g. liveness, key, energy). The full list and definitions of
the audio attributes can be found in [4].

Some preliminary analysis of the audio feature values can be
found in Figure 1a. Looking at the distributions of audio character-
istics, we notice that different features have different distributions.
Some features (e.g. flatness, instrumentalness) have bimodal / heav-
ily skewed distributions, which are likely to impact results when we
analyze variations in feature values across different sessions. When
we compute the Pearson correlation between audio characteristics,
we also found that most features are not correlated with each other.

3.3 State Extraction via Change Point Detection
In order to perform state extraction and measure state transitions
across sessions, we analyzed 50,000 listening sessions from MSSD.
Each sequence of audio feature values in a session is treated as a time
series (i.e. 18 sequences per session), and change point detection is
used on each sequence to detect changes and extract states.

We model the latent states of each sequence using a Hidden
MarkovModel (HMM), usingk discrete latent states zt ∈ {1, 2, . . . ,k}.
To model movement between states, we define a simple transition
model using a categorical distribution, such that the probability of
staying in the previous state or transiting to another state is uniform
zt |zt−1 ∼ Cat({ 1k , . . . ,

1
k }). The emission probabilities are defined

using a normal distribution xt ∼ N(µzt ,σ
2
feat) where µzt is the

mean of the trainable latent states, and σ 2
feat is the average standard

deviation of the corresponding audio feature across all sessions.
We also include a prior on the latent states zt ∼ N(µfeat,σ

2
feat), us-

ing the average mean and standard deviation of the corresponding
audio feature across all sessions.

To train the model, we run an Adam [9] optimizer with a learning
rate of 0.1 to compute the Maximum a Posteriori (MAP) fit to the
observed values:

µMAP = argmaxµ p(z1:T |x1:T ) (1)

Once the model is fitted, we compute the marginal posterior
distribution p(Zt = zt |x1:T ) over the states for each timestep using
the forward-backward algorithm and assign the most likely state
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Figure 1: (a) Distribution of values for selected audio features in MSSD. Green plots have heavily skewed distributions com-
pared to the rest. (b) Raw audio feature values (Normal line) and their corresponding states (Bold line) for 2 selected audio
features in 4 sample listening sessions.

to each timestep:

z∗t = argmaxzt p(zt |x1:T ) (2)

In our experiments, we set k = 10, but states with similar means
are merged together after inference. States with fewer than 3 tracks
are also filtered out, since states with only 1 or 2 tracks are not
meaningful. Since each session has a maximum of 20 tracks and
each state should be meaningful, we will not have more than 10
latent states, thus k was set to 10. Examples of raw feature values
and the inferred states generated by the HMM can be seen in Figure
1b.

Our state extraction mechanism captures both global and local
variations of audio characteristics in listening sessions. User prefer-
ences would vary between different sessions, and our mechanism
captures local variations as we fit a HMM per audio feature per
session. However, global variations are also taken into account as
the local HMM parameters are derived from global distributions
of the audio feature values. Lastly, we define a state or session as
satisfying (SAT) when the average number of skips ≤ 0.25, and
dissatisfying (DSAT) when the average number of skips ≥ 0.75.

4 FINDINGS
4.1 RQ1: How varied are audio properties of

tracks within a session?
4.1.1 Do audio characteristics change across tracks in listening ses-
sions? Audio characteristics do change across tracks in listening
sessions once we analyze the states extracted for each feature in
each session. Over 95% of the sessions have at least 1 feature with
≥2 states, as seen in Figure 2a, which indicate the majority of ses-
sions have at least 1 feature with variations. However, over 55% of
sessions have fewer than 5 features with ≥2 states, which implies

that most sessions are characterized only by a handful of features,
rather than all the features.

4.1.2 Are fluctuations in audio characteristics common? Fluctua-
tions in audio characteristics are also fairly common, as seen in
Figure 1b, where 2 selected audio features and their corresponding
states extracted using our model are plotted for 4 sample sessions.
We can observe that the number of states vary across different
features in different sessions, with many features exhibiting 1 state
(Loudness in Session 3), 2 states (Sessions 2 & 4), and even 3 states
(Danceability in Session 1). The number of transitions also vary,
with some features transitioning only once (Sessions 2 & 4), while
some features exhibit many transitions (Session 1).

4.2 RQ2: How do variations in audio
characteristics differ across the different
audio attributes?

Most features have at least 20% of the sessions with ≥2 states, as
shown in the first 5 features of Figure 2c. However, a few features
(e.g. instrumentalness, key, time_signature) have <10% of the ses-
sions with ≥2 states. These coincides with their bimodal / highly
skewed distributions.

When measuring transitions between states, we also observed
that different features exhibit different number of state transitions,
as shown in Figure 2d. By measuring the ratio of state transitions
to all track transitions, features such as ‘acousticness’ exhibit a lot
more fluctuations between states than others like ‘key’. Thus, some
features have more variations than others, both in terms of number
of states and transitions.
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Figure 2: (a) Distribution of sessions with N features that have ≥2 states. (b) Distribution of sessions across average number
of state transitions. (c) Percentage of sessions with 2,3,4 states respectively across selected audio features. (d) Percentage of all
transitions that are state transitions across selected audio features.

Table 1: Percentage of states over all sessions that are SAT or DSAT for selected audio features

acousticness bounciness danceability key liveness mechanism organism tempo
SAT 23.70 21.73 21.90 23.23 20.07 22.53 23.05 23.97
DSAT 25.36 26.50 26.67 25.96 23.64 27.49 25.90 24.06

4.3 RQ3: Are variations in audio properties
related to user satisfaction?

4.3.1 Are state transitions correlated with skips? State transitions
are eventful as they may lead to users being satisfied or dissatisfied
with the new states.While some features havemore state transitions
than others (Figure 2d), we found that there is a consistent trend
across all features when we compare the ratio of state transitions
that are correlated with skip/non-skip transitions, to that of all state
transitions. That ratio is about 25% across all audio features, which
is a significant portion of state transitions.

4.3.2 Are users typically okay with fluctuations? We hypothesize
that the number of state transitions affect user satisfaction in ses-
sions, as users may not be happy when the audio characteristics of
the tracks in their listening sessions frequently changes. To mea-
sure that, we compared the average number of transitions in the
top 5 features in SAT and DSAT sessions, and we found that SAT
sessions do have fewer state transitions in general, as seen in Figure
2b. The top 5 features are selected based on the total number of
transitions the feature has across all sessions.

4.3.3 Are the states of audio features related to user satisfaction?
We observe that 40 to 50% of the extracted states in audio features
have useful information in Table 1, as they exhibit correlation with
SAT/DSAT. This could be leveraged in good ways, and potentially
used to optimize sessions for SAT if we re-rank tracks with SAT
states over tracks with DSAT states. However, it should be noted
that this may be pure correlation – there might be other factors
which results in a certain state being related with SAT.

4.4 RQ4: Can insights about audio states help
in track sequencing for improved user
satisfaction?

Having shown that the states of audio features in sessions are indeed
correlated with SAT/DSAT, we attempt to leverage the features
and its extracted states to optimize sessions for SAT. While the
development of an audio-state aware track sequencing model is
beyond the scope of the present study, we perform a counterfactual
track re-ranking experiment to investigate the promise offered by
the audio state information. Specifically, we use user interaction
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Table 2: Ranking results on remaining candidate tracks in 15,000 sessions, after taking out the first N = 5 in-session tracks
from each session. Rank byUser Relevance: Rank by similarity between user vector and candidate track vector. Rank byAudio
Similarity: Rank by cosine similarity between the first N in-session tracks and candidate track. Rank by Popularity: Rank by
popularity score (us_popularity_estimate in MSSD). Random Top 3 Features: Rank using randomly selected audio features.
Global Top 3 Features: Rank using audio features that appear most frequently across all sessions. Known Top 3 Features:
Rank using the best audio features for each session.

NDCG@10 AP@10 P@10 RR@10
Top 1 Top 2 Top 3 Top 1 Top 2 Top 3 Top 1 Top 2 Top 3 Top 1 Top 2 Top 3

Rank by User Relevance 0.667 – – 0.615 – – 0.530 – – 0.628 – –
Rank by Audio Similarity 0.700 – – 0.642 – – 0.538 – – 0.690 – –
Rank by Popularity 0.719 – – 0.662 – – 0.542 – – 0.712 – –
Random Top 3 Features 0.672 0.675 0.675 0.618 0.619 0.620 0.531 0.532 0.532 0.636 0.641 0.642
Global Top 3 Features 0.674 0.678 0.681 0.617 0.620 0.623 0.533 0.534 0.535 0.639 0.646 0.653
Known Top 3 Features 0.730 0.734 0.734 0.681 0.682 0.682 0.544 0.547 0.546 0.706 0.719 0.721

information from the entire session, and identify top audio feature
which would have resulted in a potential track ordering which
minimizes skips. Doing so enables us to understand the scope of
potential improvement possible if we have access to such an oracle,
which helps us identify appropriate audio feature for each session.

For each session, we pick the top few attributes that helps us
re-rank the session best. For each audio feature, we tag its differ-
ent states as "good" state or "bad" state, wherein we define the
‘good’ness of a state by its average number of skips – the lower the
average number of skips, the better the state is. Subsequently, each
audio attribute can be used to re-rank the tracks in a session by
ranking tracks in ‘good’ states higher than tracks in ‘bad’ states.
Tracks within the same state are ordered by its original session
position, since the tracks in a session in MSSD already have an
implicit ranking based on user-track similarity. For example, if the
‘acousticness’ feature in a session of 15 tracks has 2 states, where
state A has 5 tracks where 1 track is skipped, and state B has 10
tracks where 8 tracks are skipped, we can rank all the tracks in
state A higher than state B, since state A has a lower average skip
than state B.

However, when re-ranking a collection of unseen candidate
tracks, we do not have information on whether the unseen tracks
will be skipped, and consequently how ‘good’ the states are. We
can attempt to predict how ‘good’ are the states in the top few
features by incorporating skip feedback from the first N in-session
tracks, then using that prediction to re-rank the remaining tracks.
Feedback can be incorporated into the states by assigning a positive
score for states that appear in non-skipped tracks, and a negative
score for states that appear in skipped tracks. Subsequently, we
can treat states with higher scores as better states, and use this to
re-rank the candidate tracks.

We begin by analyzing the distribution of audio features amongst
the identified top audio attributes. We observe that there exist a
variety in the features that best optimize different listening sessions:
while some features like ‘acousticness’ and ‘beat_strength’ appear
more often than others, no single feature dominates all the sessions.
This indicates that there is no global audio feature which will work
best always, and further motivates the need to develop prediction
models that are able to predict the top audio features per session,
which can be used to optimize sessions for SAT.

In our experiments, we have found that we are indeed able to
optimize sessions for SAT by leveraging audio attributes and their
states, as shown in Table 2, where we outperform several baselines.
Comparing the different track ranking approaches, we observe that
ranking by audio similarity is better than ranking by user relevance.
Further, we observe that exposing popular content is well received
by users, despite it suffering from the filter bubble issue of biasing
recommendations towards popular content.

If we use a random set of features, or a fixed set of top-3 audio
attributes that appear most frequently, we do not improve user SAT
by much. However, if we assume access to the oracle which helps
us identify the top-3 audio features per session, then using those
features we are able to improve the SAT metric by over 10% relative
to ranking by user relevance. This is a very promising result, since
it highlights that by developing and leveraging an accurate audio
attribute prediction model, we can hope to increase satisfaction
metrics by a significant amount. While this motivates the need
for further research around the development of such a predictive
model, it also highlights the fact that appropriately considering
audio state information in track sequencing is a promising future
direction to pursue.

5 IMPLICATIONS & CONCLUSION
Analyzing state transitions of different audio attributes within ses-
sions highlights that fluctuations in audio properties are fairly com-
mon in music streaming sessions, and are related with the skipping
behavior of users. More importantly, we highlight that leveraging
the right audio attribute to re-rank tracks can result in increasing
user satisfaction metrics by 10%. These findings bring to attention
the importance of developing a number of important prediction and
sequencing models. First, we advocate for the development of a real-
time model which leverages immediately available user feedback, to
predict dominant audio attributes to consider for track re-ranking.
Such a system enables development of better contextualized recom-
mendations on streaming platforms, including radio and playlist
continuation products. Second, we advocate for track sequencing
algorithms which help maintain the sequential aesthetics of music,
by appropriately modulating audio properties of subsequent songs
to be acoustically similar as a function of creative intent exhibited
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in the current user session. Such models suffer from less abrupt
transitions, thereby leading to enhanced user engagement. Finally,
we posit that the importance of audio attributes are conditioned
on context, specifically, user intent behind consuming music. This
motivates the need for development of intent extraction techniques
as well as methods which identify the importance of a specific audio
attribute to best support current intent.
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