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ABSTRACT
The tutorial focuses on two major themes of recent advances in
recommender systems:
Part A: Recommendations in a Marketplace: Multi-sided mar-
ketplaces are steadily emerging as valuable ecosystems in many ap-
plications (e.g. Amazon, AirBnb, Uber), wherein the platforms have
customers not only on the demand side (e.g. users), but also on the
supply side (e.g. retailer). This tutorial focuses on designing search
& recommendation frameworks that power such multi-stakeholder
platforms. We discuss multi-objective ranking/recommendation
techniques, discuss different ways in which stakeholders specify
their objectives, highlight user specific characteristics (e.g. user
receptivity) which could be leveraged when developing joint op-
timization modules and finally present a number of real world
case-studies of such multi-stakeholder platforms.
Part B: Automated Recommendation System: As the recom-
mendation tasks are getting more diverse and the recommending
models are growing more complicated, it is increasingly challeng-
ing to develop a proper recommendation system that can adapt
well to a new recommendation task. In this tutorial, we focus on
how automated machine learning (AutoML) techniques can benefit
the design and usage of recommendation systems. Specifically, we
start from a full scope describing what can be automated for recom-
mendation systems. Then, we elaborate more on three important
topics under such a scope, i.e., feature engineering, hyperparameter
optimization/neural architecture search, and algorithm selection.
The core issues and recent works under these topics will be intro-
duced, summarized, and discussed. Finally, we finalize the tutorial
with conclusions and some future directions.
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PART A: RECOMMENDATIONS IN A
MARKETPLACE
Multi-sided marketplaces involve interaction between multiple
stakeholders among which there are different individuals with
assorted needs. While traditional recommender systems focused
specifically towards increasing consumer satisfaction by provid-
ing relevant content to the consumers, multi-sided marketplaces
face an interesting problem of optimizing for multiple stakeholder
objectives [3, 4]. Part A of the tutorial consider research problems
which need to be addressed when developing a recommendation
framework powering a multi-stakeholder marketplace.

Outline of the tutorial
We begin by contrasting traditional recommendations systems with
those needed for marketplaces, and identify four key research areas
which need to be addressed. First, we discuss algorithmic techniques
for multi-objective rankings & recommendations [5] to jointly opti-
mize the different objectives. Second, we discuss different ways in
which stakeholders specify their objectives. Third, we discuss user
& content specific characteristics which could be leveraged while
jointly optimizing such models. Furthermore, we discuss evaluation
of such systems and present numerous case industrial studies.

(1) Introduction to Marketplace
(2) Phase I: Multi-Objective Ranking
(3) Phase II: Optimization Objectives
(4) Phase III: Leveraging User & Content Understanding
(5) Phase IV: Multi-sided evaluation
(6) Phase V: Open Research problems
The tutorial is aimed at introducing practitioners to the methods

that can be used to develop multi-stakeholder search and recom-
mender systems. The main focus of the tutorial is (i) components
which constitute a multi-stakeholder system, and (ii) imparting
knowledge on how to design and develop each of these compo-
nents in a scalable way. The tutorial builds upon recent RecSys
2019 tutorial [3] on similar topic, and presents additional multi-
objective algorithms and recent case studies.
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PART B: AUTOMATED RECOMMENDATION
SYSTEMS
With diverse task settings and complicated models, it is a severe
problem to design recommender systems that can adapt well to
new tasks. Recently, automated machine learning [7], which targets
at easing the usage of machine learning tools and designing task-
dependent learning models, has become an important and popular
area with both practical needs and research values. In this tutorial,
we discuss leveraging AutoML to help solve the problem.

Outline of the tutorial
The outline of the tutorial is as follows. After introducing the back-
ground and preliminaries for AutoML and RecSys, we will discuss
using AutoML to design and improve recommendation models from
four aspects: model design [6], hyper-parameter optimization [1],
feature engineering [2], and exploitation of rich side information.
Lastly, we will summarize the tutorial and discuss future directions.

(1) Introduction to AutoML
(2) Phase I: Automated Model Design / Neural Architecture Search

• Efficient Neural Interaction Functions Search
• Automated Model Search for Collaborative Filtering

(3) Phase II: Hyper-parameter Optimization for Recommendation
• Regularization Automatic: Framework and Method
• Embedding Size Automatic: Methods and Directions
• Learning Rate and Other Parameters Optimization

(4) Phase III: Feature Engineering for Recommendation
• AutoCross: Automatic Feature Crossing for Tabular Data
• AutoFM: Automatic Feature Selection for FM

(5) Phase IV: Automated Exploitation of Rich Side Information
• Automated Knowledge Graph for Recommendation
• Automated Graph Neural Networks for Recommendation

(6) Phase V: Conclusion and open discussions

There were two related tutorials: Alexandros Karatzoglou and
Balázs Hidasi, Deep Learning for Recommender Systems, at RecSys
2017; Parashar Shah and Krishna Anumalasetty, Democratizing &
Accelerating AI through Automated Machine Learning, at KDD
2019. This tutorial is significantly different from them as it focuses
on how to leverage automated machine learning in recommender
system.
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