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ABSTRACT
Platform ecosystems have witnessed an explosive growth by fa-

cilitating interactions between consumers and suppliers. Search

systems powering such platforms play an important role in surfac-

ing content in front of users. To maintain a healthy, sustainable

platform, systems designers often need to explicitly consider expos-

ing under-served content to users, content which might otherwise

remain undiscovered. In this work, we consider the question when

we might surface under-served content in search results, and in-

vestigate ways to provide exposure to certain content groups. We

propose a framework to develop query understanding techniques to

identify potential non-focused search queries on a music streaming

platform, where users’ information needs are non-specific enough

to expose under-served content without severely impacting user

satisfaction. We present insights from a search ranker deployed

at scale and present results from live A/B test targeting a random

sample of 72 million users and 593 million sessions, to compare per-

formance of different methods considered to identify non-focused
queries for surfacing under-served content.
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1 INTRODUCTION
Modern platforms, such as Uber, Amazon, Airbnb, Spotify and

YouTube, are increasingly emerging as the go-to applications fa-

cilitating economic exchange between consumers and suppliers.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00

https://doi.org/10.1145/3340531.3412741

These platforms need to meet the needs not only of the demand

side (e.g., users), but also on the supply side (e.g., retailer, artists). In
the success of these platforms, search functionality plays a key role,

as it links the direct needs of the users to relevant content provided

by the suppliers.

Most traditional search systems have been user-centric in their

approach of optimization and evaluation. Systems that power multi-

stakeholder marketplaces however have to account for supplier

exposure on their platforms. Typical of most search and recom-

mender systems, there often exists content that is not surfaced to

the users. This can be caused by a lack of metadata, popularity

bias or unspecific query formulation. Further, blindly optimizing

for consumer relevance has shown to have a detrimental impact

on supplier exposure and fairness [22]. Indeed, an ill-optimized

search system might unintentionally provide differential exposure

to certain set of suppliers. To ensure a healthy, sustainable plat-

form, systems designers need to consider this disparate impact on

supplier exposure and develop ways of mitigating it.

Given the important role search plays in surfacing content, inves-

tigating ways to provide exposure to certain content and supplier

groups via search results would go a long way in giving system

designers more control over consumption on their platform.

In this work we consider the question: when might we surface

under-served content in search results? Specifically, we consider a

search system powering a large scale music streaming platform, in

which artists pose as suppliers and users pose as customers. Recent

findings around the non-specificity in user intents [19, 21] indicate

that many opportunities to present under-served content exist on

music streaming platforms. Users often have low or no preference

about the specific content they wish to stream. Such opportunities

can be exploited to surface under-served content, thereby enabling

that content to reach a broader audience.

We propose a framework to develop query understanding tech-

niques to identify potential non-focused search queries on a music

streaming platform [19]. We posit that there exists certain non-
focused queries with broad intents, where users are generally more

open to non-specific recommendations (e.g., “relaxing music”). Iden-

tifying such non-focused queries provides opportunities to surface

result from undiscovered, under-served music content. This can

help platforms to improve exposure of under-served content, with-

out impacting user satisfaction.

To instantiate the problem and identify non-focused queries, we

assume two types of content we wish to surface more, which we

use as running examples throughout this work.

Niche Genres: Typical of most recommender systems, there exist

categories of content not yet discovered by a broader audience. For

example, genres like Classical, Jazz and Blues have historically been
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considered niche, despite having dedicated groups of core listen-

ers. For the less-familiar, non core-audience, search systems could

surface this type of content more. This would make this content

more accessible, and enable non-core listeners to discover it with-

out alienating core-listeners.

Casual Music: Often users aspire to listen to casual music, mainly

composed of non-music audio (e.g., nature sounds) or instrumental

tracks. Such music content is often characterized by smooth, co-

hesive composition and a lack of jarring or disruptive sounds. For

this type of music content, users often have low or no preference

on the specific content they wish to stream, and hence face trouble

in articulating their information needs to access such content. This

casual music forms the second group of content we wish to surface

in search results, by identifying broad queries.

Our goal in this work is to identify queries for which a search

ranker can potentially surface results from under-served content

groups, such as the Niche Genres and Causal Music identified above,

without hurting user satisfaction. Such a module can in turn be used

by query-content matching and ranking systems to train models to

surface under-served content.

Contributions. In this paper we consider the problem of identify-

ing non-focused queries, i.e., queries that can be targeted to boost

under-served content. We draw inspiration from recent research

on broad-intent queries and user mindset analysis to address the

problem [19] and define focused and non-focused queries. Focused

queries relate to a specific information need, e.g., “katy perry fire-
works”. Non-focused queries represent amore broad and open ended

information need, where users have a seed of an idea in mind and

are generally more open to non-specific recommendations, e.g.,
“relaxing music”.

Building upon existing work on search query understanding [7,

13], we identify three classes of features derived from query charac-

teristics and user interactions, which are predictive of identifying

relevant queries to surface under-served content (Section 3). Fur-

thermore, for each class of under-served content, we train models

to predict a query level score that indicates the suitability to surface

under-served content (Section 4). Due to the lack of large scale

labeled data, we additionally present weak supervision approaches

to learn from limited labeled data.

We present insights and findings from a large scale deployed

search ranker powering a popular music streaming platform. Based

on user interaction data from over 10 million users and 500K search

queries, we analyze how the different query identification features

perform, and present offline prediction performances across differ-

ent models. Finally, we conduct a live AB test on 70 million users

for a duration of one week to evaluate the predictive power of the

proposed model in an online test. We contend that our findings

and insights have implications on the design of multi-stakeholder

search systems powering online marketplaces.

2 RELATEDWORK
Search & Recommendations on Platforms. The major motivation of

our work stems from the need to balance supplier preferences with

user needs on multi-stakeholder platforms. Platforms and market-

places have enjoyed a long history of detailed research [28, 29], with

past work exploring competition [5], strategies [14] and econom-

ics [20] on such platforms. The concept of multiple stakeholders

in recommender systems is also suggested in prior research [1].

The role of search and the need for supplier considerations is an

understudied area, which we focus on in our work.

Query Understanding. To facilitate the exposure of under-served

content, we rely on developing query understanding module. The

problem of query understanding has enjoyed a long history of active

research, with advancements around understanding query seman-

tic [15], knowledge-based conceptualization [33], semi-supervised

learning [32] and neural learning for voice query understanding on

an entertainment platform [27], and query intent modeling [6, 16].

Sponsored Ads. An idea related to surfacing under-served content

via search results is Sponsored Ads. Given a set of keywords, usually

businesses pay for advertisements to show up in the search results

when the users write a search query including those keywords. Pre-

vious works addressed this as multi-label learning problem where

the words within a query are treated as labels to annotate the rele-

vant results along with advertised content [2, 12, 26].

We build on top of such work and in particular on quantifying

broadness of query aspects [30] and intent [6], and leverage such

aspects to specifically consider how some queries are better suited

than others to include under-served content.

3 QUANTIFYING NON-FOCUSED QUERIES
We want to detect non-focused queries, i.e., candidate search queries

for which the ranking algorithm could present under-served con-

tent to users while satisfying their search needs. An intuitive ap-

proach could be to check existing results associated with queries,

and check for which queries the users are consuming under-served

content. However, such content is by definition surfaced very rarely,

hence the simple inspection of results for existing queries is largely

ineffective. This presents a major challenge, as the direct inspec-

tion of queries and results shown and consumed by the user is

non-informative for the majority of the queries. To overcome the

limitation, we propose the following groups of features:

• Standalone features: these include surface-level informa-

tion from the queries alone.

• Reference dependent features: these are conditioned on

gold standard (reference) queries that already included under-

served music content in their results, and consumed by users.

• Interaction features: quantifying the generality of a query.

Notation. We indicate with 𝑄 all of the queries under analysis,

and 𝑄𝑟
indicates the reference queries, i.e., those queries for which

the users already are consuming under-served content. We refer

to the results associated to queries as 𝑅. The results the users click

on are indicated with 𝑅𝑐 , while the results displayed (but not nec-

essarily consumed) are indicated by 𝑅𝑑 . The under-served content

available on the platform (not necessarily included in any query

result) is indicated as 𝐶 .
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3.1 Standalone Features
There are few queries for which users are consuming under-served

content. To augment this set of queries, the first features we com-

pute is the number of under-served content displayed to users and

the number of those consumed by the users for a particular query.

Formally, the number of under-served content displayed for query

𝑖 , indicated as 𝑁𝐷𝑖 , is defined as 𝑁𝐷𝑖 = |𝑅𝑑
𝑖

⋂
𝐶 |. Similarly, the

number of under-served content consumed by the users for a query

𝑖 , indicated as 𝑁𝐶𝑖 , is defined as 𝑁𝐶𝑖 = |𝑅𝑐
𝑖

⋂
𝐶 |.

In the current system, a query is served through “Prefix Query

Resolution” mechanism, hence the text is often an abridged version

of the actual user intent. Therefore, the query text itself has little

context for feature extraction. We assume that the clicked results,

e.g., track titles, album or artist names, are latent representations of

the user’s intent. We compute the embedding vector of a query 𝑄

as a weighted average of the Word2Vec [23] vectors of the clicked
results. Similarly, the vector representation of a track is computed

based on its co-occurrence statistics across playlists and the vector

representation of an artist is the weighted average of the tracks

they have performed [4].

3.2 Reference Dependent Features
Very few queries are labeled as reference, meaning they include

under-served content consumed by users. Nevertheless, results

returned for these 𝑄𝑟
queries can be compared against results

returned for all other queries𝑄 . We hypothesize that higher overlap

among the pair of results would mean that a particular query 𝑄𝑖

is highly similar to a query belonging to 𝑄𝑟
. We compute two

similarities: overlap in clicked results (𝑆𝑐 ), and overlap in displayed

results (𝑆𝑑 ). Both are computed in terms of the number of entities

overlapping divided by the size of their union, i.e., the Jaccard

similarity between consumed or displayed results. Formally, for

any query 𝑖 we compute 𝑆𝑐
𝑖
=

∑ |𝑄𝑟 |
𝑗=1

(𝐽 (𝑅𝑐
𝑖
, 𝑄𝑟

𝑗
)), where 𝐽 is the

Jaccard similarity. Similarly, 𝑆𝑑
𝑖
=
∑ |𝑄𝑟 |

𝑗=1
(𝐽 (𝑅𝑑

𝑖
, 𝑄𝑟

𝑗
)).

Embedding Distance. We conducted a pilot study and observed

that, given thewide range of results available for the same query, the

Jaccard similarity is 0 in most cases. To remedy this and avoid scala-

bility problems when 𝑄𝑟
is large, we considering non-exact match-

ing additional metric, the distance 𝑑 (𝑄,𝐶), defined in terms of em-

beddings of the target entities 𝑅𝑐 (artist, track, album, playlists, i.e.,
results that users click on for the particular query), with respect to

under-served content𝐶 . Formally, 𝑑 (𝑄,𝐶) = 𝑓 (𝑑1, . . . , 𝑑 |𝐶 |), where
𝑓 computes the average of its 5 smallest inputs, and 𝑑𝑖 (𝑄,𝐶𝑖 ) =

𝐿2_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎𝑣𝑔(𝑅𝑐 ),𝐶𝑖 ). The distance is computed using FAISS, a

fast approximate nearest neighbor algorithm [17]. The distance is

useful when there is currently no under-served content displayed.

Queries that exhibit a low 𝑑 (𝑄,𝐶) while not including any of such

content include study music, peace, and sleep stories.

Pronunciation distance (Dist Prons). . This metric measures the

weighted pronunciation distance between the reference queries𝑄𝑅

and rest of the queries. The pronunciation distance metric is a cus-

tomized Levenshtein distance [18] that overlooks the orthographic

differences to capture the similarity between the query texts. First

we convert the query text into sequence of phonemes by applying

Grapheme-to-Phoneme (G2P) model trained on a recurrent neural

network (RNN) with long short-term memory units (LSTM) archi-

tecture [24]. Since queries tend to be very noisy, it is advisable to

ignore commonly confused pairs of phonemes (e.g., {D, DH, T, TH }

). To this end, we choose a lower edit cost for commonly confused

pairs while computing the distance, otherwise all edit costs are 1

and the lower edit costs are derived from the statistics discussed

in [3]. Then we compute the distance between pairs of 𝑄 and 𝑄𝑅

phoneme sequences. An advantage of pronunciation distance over

the lexical edit distance is the ability to detect commonmisspellings,

word elongations, or incomplete strings of a reference query. The

table below shows that the pronunciation distance is 0 for the pair

of incorrect and correct query (“Randy Rhoads” pronounced as “r

ae n d iy r ow d z”) which means they are highly similar, whereas

the lexical distances are non-zero values.

Wrong spellings

Lexical

distance Phonetic spelling

pronunciation

distance

Randy Roads 1 r ae n d iy r ow d z 0

Rhandy Rohads 3 r ae n d iy r ow d z 0

Rhaandhy Rhoadzzz 6 r ae n d iy r ow d z 0

Knowledge Graph Distance (Dist Wiki KG). Queries that often
share similar results tend to share ontological roots. To capture

this, we linked the queries to entities on Wikipedia Knowledge

Graph (KG) using an open-source entity linking toolkit, Fast En-

tity Linker [8, 25], mapping the partial queries to canonical KG

entities. Then, we measure the distance between the embeddings

of KG entities (corresponding to their respective queries) using

the pre-trained embeddings model Wikipedia2Vec [34]. Query text

mapped to their respective KG entities could disambiguate queries

that are lexically similar but refer to different entities and are distant

in the embedding space. The example below shows queries with

a common phrase “small town” but referring to different KG entities:

Query text Wikipedia KG entity

small town usa Small_Town_USA

small town girl Small_Town_Girl_(song)

break up in a small town Break_Up_in_a_Small_Town

small town saturday night Small_Town_Saturday_Night_(song)

3.3 Interaction based Features
Click Entropy. This indicates whether a query is highly non-

focused or not. For a query 𝑞, the entropy 𝐻𝑞 is computed as

𝐻𝑞 = −∑
𝑘 (𝑝 (𝑅𝑐𝑞,𝑘 ) ∗ log(𝑝 (𝑅𝑐

𝑞,𝑘
)), where 𝑝 (𝑅𝑐

𝑞,𝑘
) is the proba-

bility of the result 𝑅𝑐
𝑞,𝑘

to be consumed by the users. As this value is

not analytically computable, we estimate it by counting the number

of times that users clicked on a particular result based on the same

query. Entropy indicates broad intent understanding. Simultane-

ously, there is a strong correlation between an unfocused query

and receptiveness of a user to explore novel content [31]. Examples

of queries that include under-served content and have high entropy

are wedding, instrumental, sad, morning.

4 PREDICTION OF NON-FOCUSED QUERIES
The proposed features carry information on which non-focused

queries are better suited to return under-served content. Based on

these, we want to learn a model to predict whether an unlabeled

query could help presenting under-served content in the search

Applied Research Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

2767



results. We devised two manual thresholding-based predictors, and

three machine learning models using the proposed features.

4.1 Feature Thresholds as Predictors
First, we analyzed threshold-based predictors. For each feature

under analysis, the predictor aim at predicting the output based on

an evolving threshold. For threshold 𝜌𝑠 and a feature 𝑠 , we regarded

the examples having the feature under examination higher than

the threshold as positive, and those with the feature lower than

the threshold as negative. Formally, the prediction 𝑦𝑡𝑠 = 1 ⇐⇒
𝑠 ≥ 𝜌𝑠 , 𝑦𝑡𝑠 = 0 otherwise, where 𝑠 is a non-distance-based feature.

For distance-based features the prediction is reversed, because of

the negative correlation of distance-based features with the output

to predict. 𝜌𝑠 is a feature specific threshold that has been cross-

validated on a learning set 𝑋𝑙𝑟 after multiple splits in training and

validation (10 fold cross-validation).

We also tested a pairwise combination between the features,

based on a pair of features and thresholds using the logical AND

between two features, as: 𝑦𝑡𝑠 = 1 ⇐⇒ 𝑠1 < 𝜌1 AND 𝑠2 < 𝜌2,

𝑦𝑡𝑠 = 0 otherwise. As before, when 𝑠1 or 𝑠2 are distance-based

features, we consider 𝑠1 > 𝜌1 and/or 𝑠2 > 𝜌2.

We then employed an automated procedure to find the best mul-

tiple combination of features, using a decision tree classifier [11]

to automatically devise a prediction rule to identify which queries

could potentially include under-served content. A decision tree clas-

sifier builds a “decision tree”, meaning that starting from the most

discriminative feature, it employs a set of threshold-based rules on

the features to arrive at the best prediction. As this procedure is

prone to overfitting [9], we employ a grid search cross-validation

procedure limited to height tree structure of 5 to find the best deci-

sion tree. Not only do decision trees provide an automated way to

infer the best thresholds, they also allow us to easily interpret the

results through their inspection.

Each sample is associated with a probability of belonging to

one class. Based on this, we consider two ways to assign the class

label to the sample: we assign a class if the probability of the label

is higher than 0.5, or we change the probability threshold after

cross-validating the threshold on the validation set.

4.2 Trained Models
Threshold-based predictors have clear limitations, such as failing to

learn non-linear relationships. To overcome this limitation, we use

two statistical models trained on the features discussed above. First

we trained a random forest classifier, an ensemble learning method

that constructs a multitude of decision trees during training and

returns the class that corresponds to the mode of the classes of

the individual trees during prediction [10]. Due to random feature

selection and bagging, random forests are known to alleviate over-

fitting problems. We train and validate the model using a 10-fold

cross validation procedure for optimal parameters. We also use a

neural network architecture comprising two dense layers (with 128

and 64 neurons, respectively) with a dropout of 0.5 between the

layers, which we train for 100 epochs.

4.2.1 Leveraging Weak Supervision. Query labeling has a high cost.

Themajority of queries are unlabeled, hencewe prefer to use the few

labeled queries to improve the predictive power of our models. We

employ weak supervision techniques with inaccurate labeling [35].

To assign aweak supervision label to unlabeled queries, we explored

several approaches. First, we experimented on which model to use

to assign the weak supervision label, between the decision tree and

the random forest classifier, and we chose the latter as it performed

best on the validation set. Then, we estimated the output labels of

all queries 𝑄 using the random forest classifier, and regarded such

labels as weak supervision labels. Second, we considered different

ways to use the weak supervision labels: (i) using only a subset

of the weakly-labeled queries, based on the probability of label

assignment, i.e., only considering the queries for which the model

assigned a label with probability higher than 0.8, or (ii) considering

all 500K queries with the weak supervision label, but using the

probability of label assignment as sample weight during the training

procedure of the neural network. We empirically selected the latter

option, based on an higher performance on the validation set.

4.3 Ensemble
Each classifier, as empirically shown in Section 5, has its own

strength and weakness. To benefit from all of the different clas-

sifiers, we devised an ensemble model based on the predictions of

the best performing classifiers, namely the threshold-based (using

Entropy, Pronunciation distance, Min Dist Content, Dist Reference
Queries) and the neural network classifier. The ensemble model is a

voting mechanism with three different voting criteria: 𝐸𝑛(𝑞) = 0

if at least one classifier identifies non-focused query, 1 if at least

two classifiers agree, or 2 if at least three classifiers agree. Such

voting criterion aims at higher recall: when any of the classifiers

predict a query to be non-focused, then there is potential to present

under-served content to the user.

5 EXPERIMENTS & RESULTS
We conduct three empirical evaluations to investigate the effective-

ness of different techniques to identify queries to surface under-

served music content. First, we gather labeled test data from music

domain experts and evaluate the models on it. Then, we conduct

gain vs. loss based comparison to showcase the trade-off between

surfacing more under-served content and drop in relevance. Finally,

we demonstrate performance gains via a live A/B test in Section 6.

Dataset Description. We use logged feedback data and live pro-

duction traffic from an online music streaming service to under-

stand how users search for music content. We logged the search

result pages returned for each query along with users’ interactions

(such as clicks or taps) on the results. This dataset consists of ∼500K
unique queries, extracted from a random sample of 35M queries

in May 2020. The queries are selected if they include more than

two characters. Also, we limit queries by only considering US users.

Starting from the original 35M queries, those have been grouped

together by the query text (exact matching after trimming and clus-

tering of queries having at least the first three letters in common,

based on the number of entities), which resulted in ∼500K queries.

Using a stratified sampling across the query population with

entropy and distance features, we selected 1000 queries for manual

annotation by a team of in-house subject matter experts in music

content and culture. The annotation task was performed separately

for the Niche Genre and Casual Music groups. For each query, an
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Figure 1: Pairplot between the most discriminative features
on Casual Music (left) and on Niche Genres (right). The dis-
tributions are plotted on the labeled dataset. The label indi-
cates whether a query could potentially include casual mu-
sic / niche genres.

expert was asked to label whether we could surface search results

from those groups or not. We regard these queries as the annotated

dataset, used to evaluate different models. We use the other 500K

queries as weak supervision dataset to train models at scale.

5.1 Evaluating Threshold based Predictors
We investigate different predictors on the expert annotated labels

by looking at the predictive value of features.

5.1.1 Feature Analysis. Figure 1 shows the distribution of some of

the features discussed above on a dataset of labeled queries, i.e., for
which we have the labels associated to the queries. We indicate with

class 0 the focused queries and with class 1 the non-focused

queries, i.e., candidates to support under-served content. The left

plot represents the analysis on Casual Music, while the right plot

represents the analysis on Niche Genre. Notably, especially for the

left plot, Dist Reference Queries (embedding distance from reference

queries) almost displays a bi-modal distribution that discriminates

between the target classes. Feature values that best identify class 1
are concentrated on the left part of the plot. This means that a single

threshold on this feature could potentially discriminate the major-

ity of the queries. On the other hand, Entropy and Pronunciation
Distance are evenly distributed, thus moderately discriminating

the target classes. When observed in combination, the features

achieve higher discrimination power as shown in the sub-figure

of Embedding Distance & Entropy, as well as Embedding Distance
& Pronunciation Distance. This means that the features could be

indeed beneficial for the discrimination task, as discussed later.

Generally, we note how such features are less separated in the

Niche Genre case. This suggests that the query classes on such task

may be harder to separate. We show later (Section 5.1.2) how this

is indeed the case, as overall the results for the models trained on

predicting the classes of queries for Casual Music perform generally

better than those trained to predict for Niche Genre.

Table 1 includes the Pearson correlations between the single

features (sorted by decreasing absolute value) for Casual Music

(top part of the table) and Niche Genre (bottom part). First, we

note how the relative importance of the features changes across the

two groups, suggesting that the two tasks need to be considered

𝜌

Casual Music

Embedding distance 𝑑 (𝑄,𝑄𝑟 ) -0.454

Click entropy of a query 𝐻𝑄 0.332

Jaccard for displayed (𝑆𝑑
𝑖
) 0.306

Jaccard for clicked (𝑆𝑐
𝑖
) 0.248

No. displayed results |𝑅𝑑 | 0.191

No. clicked results |𝑅𝑐 | 0.169

Knowledge graph distance -0.056

Pronunciation distance 0.040

Embedding distance to content 𝑑 (𝑄,𝐶) -0.018

Niche Genre

Jaccard for displayed (𝑆𝑑
𝑖
) 0.407

Jaccard for clicked (𝑆𝑐
𝑖
) 0.405

Embedding distance 𝑑 (𝑄,𝑄𝑟 ) -0.369

Embedding distance to content 𝑑 (𝑄,𝐶) -0.305

Click entropy of a query 𝐻𝑄 0.291

No. displayed results |𝑅𝑑 | 0.232

No. clicked results |𝑅𝑐 | 0.185

Pronunciation distance 0.060

Knowledge graph distance -0.005

Table 1: Correlation with label of single features (sorted by
absolute value) for Casual Music and Niche Genres.

Figure 2: Prediction results using a single threshold-based
predictors on Casual Music.

separately, as the predictors would need to use the same features in a

different manner. For Niche Genre, we observe that the correlations

are higher for Jaccard similarity for the displayed (and clicked)

results between queries 𝑄 and reference queries 𝑄𝑅
. This is an

expected correlation, mainly because the user’s intent is captured

in the results and higher overlap in both sets of results indicate

better predictability of the target label.

For Casual Music, the highest (in absolute value) correlations are

for the embedding distance to the reference queries, meaning that

there are high similarities on queries associated with Casual Music,

and click entropy, which suggests how users, when searching for

casual music, do not have a particular track in mind. Indeed, the

entropy of a query is well correlated with under-served content due

to the inherent nature of unfocused queries: non-focused queries

lead to an higher chance for the user to consume a wider range of

results proposed by the search system. Combination of the features

yield even better correlationwith the target label and this is intuitive

based on the feature value distribution in Figure 1.

5.1.2 Predictive Performance. Figure 2 shows how the prediction

based on single feature thresholds perform on Casual Music. Similar

considerations could be done also for Niche Genres. Detecting the

right threshold to use is important, and greatly affects performance.
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We perform a grid search on the threshold values on the validation

dataset, across all features and plot the corresponding balanced

accuracy result. We observe that as indicated by the correlational

analysis in Section 3, thresholding on the distance with respect

to other non-focused queries gives the best prediction accuracy.

Entropy based predictor gives accuracy of 0.70 with entropy thresh-

old of 1.96, which indeed highlights that queries with higher click

entropy are non-focused queries.

5.2 Performance of Learnt Models
Beyond predictors based on feature thresholds, we can also train

models based on the different query features identified. We use

three supervised models: a simple decision tree classifier, a random

forest classifier and a neural network classifier. Table 2 presents

the predictive performance for different methods for Casual Music
and Niche Genre content groups. We report precision, recall and

F1-score for both classes (0: candidate query unsuitable for under-

served content, 1: candidate query suitable to include more under-

served content) to highlight different properties of the features. In

particular, whether the goal is to increase the number of queries

in which to include more under-served content, a system designer

would prefer an high recall for class 1. The trade-off is in particular

with respect to the precision for class 0, as a drop in precision

for 0 may result in under-served content surfaced in non-suitable

queries, potentially resulting in a loss of user satisfaction.

In both groups, distance-based features (Dist Reference Queries

and Min Dist Content) perform particularly well in terms of recall

for class 1, as they only consider distance in terms of the embed-

dings of the results. Instead, because of the limit of the currently

displayed under-served content, “Content Clicked” and “Content

Displayed” have almost the worst recall for class 1.
Trained models give best accuracy and overall a better balance

between the performance on both classes. Notably, for CasualMusic,

the best accuracy is achieved by the random forest classifier, which

is overall the best predictor. However, by looking at the recall for

class 1, this model is missing out onmany queries that can include

under-served content, with a recall of just 0.226, almost the worst

across all classifiers. Instead, the best recall is given by Ensemble 0,

which is expected as a query is deemed a candidate for under-served

content if any of the classifiers in the voting return class 1 for the
query. The recall for class 1 of Ensemble 1 and 2 are lower, but still

among the highest for Casual Music group. Interestingly the neural

network model could not outperform the random forest. However,

it contributes to the voting process in the Ensemble classifier that

achieves best recall for the class 1 in both music content groups.

We argue that this is an important result since it directly impacts

the presentation of under-served content, as higher recall for class
1 is more desirable than higher overall accuracy.

5.2.1 Impact of Weak Supervision. We use the model learnt on the

curators labels to label all queries in the extended dataset (500k

queries), out of which only 650 had a manually assigned label.

We regarded the predicted labels as weak supervision labels, using
those to fine-tune a neural network which was trained on the

domain expert labeled dataset. We run this additional training for

500 epochs. Then, we fine-tuned the network further on the initial

labeled training data, to ensure that the final weights would be

Figure 3: Gain in exposure vs Loss in satisfaction results
from liveA/B test, forCasualMusic content group (Left) and
Niche Genres content group (Right).

tuned with the strongly-assigned labels. From Table 2, the overall

accuracy between the neural network classifier and the neural

network classifier after weak supervision is decreasing. However,

by closer inspection, we can make two important considerations.

First, for both music content groups, the precision of the class 0
is increasing. This means that overall the network becomes more

aware on the queries that are not suitable to include additional

under-served content. Next, we see a huge impact on the recall

for class 1, especially for Casual Music group (from 0.758 to

0.903). After the weak supervision, the network has improved in

not missing out on the queries suitable for serving casual music and

niche genres. Despite differences in content across Niche Genre and
Casual Music, we observe similar trends in performance across both

content groups. We can conclude that the weak supervision labels

bring value to the learning models, in better identifying queries

that can potentially include under-served content.

6 LIVE A/B TEST FOR SURFACING CONTENT
Identifying non-focused queries provides platforms with the oppor-

tunity to surface under-served content to the users – content that

otherwise users may not discover. System designers often have to

trade-off between balancing user satisfaction and supplier expo-

sure on the platform. Surfacing more under-served content helps

exposing undiscovered content, but can also affect user satisfaction

when irrelevant content gets ranked higher on search results.

To study the effectiveness of our proposed approach to surface

under-served content we conducted a live A/B test on our produc-

tion search platform. In addition to the default ranker, we trained

two alternative rankers by using features discussed in the previ-

ous sections that indicate whether a candidate result belongs to

Niche Genre content group or not, and to Casual Music group or not.
We then boost weights of those features relative to other default

features in the ranker. The new rankers are expected to increase

the exposure of results from the two content groups. There are

potentially other strategies to surface under-served content, which

is beyond the scope of this paper.

We conducted aweek longA/B test wherein users were randomly

divided into three test cells, assigning the default ranker to control
group, and assigning the new rankers that surfaces Niche Genre
content and Casual Music content to the two treatment groups. We

collected a large sample of interaction data covering 70 million
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class 0 class 1

precision recall f1-score precision recall f1-score accuracy

Single Feature Thresholding

Content Clicked 0.837 0.982 0.904 0.643 0.145 0.237 0.829

Content Displayed 0.848 0.964 0.902 0.583 0.226 0.326 0.829

Dist Reference Queries 0.984 0.669 0.797 0.391 0.952 0.554 0.721

Dist Prons 0.812 0.856 0.834 0.149 0.113 0.128 0.721

Dist Wiki KG 0.824 0.856 0.840 0.216 0.177 0.195 0.732

Entropy 0.934 0.561 0.701 0.295 0.823 0.434 0.609

Intersection Content Clicked 0.840 0.924 0.880 0.382 0.210 0.271 0.794

Intersection Content Displayed 0.863 0.838 0.850 0.357 0.403 0.379 0.759

Min Dist Content 0.989 0.629 0.769 0.368 0.968 0.533 0.691

Combination Thresholding

Dist Prons AND Dist Reference Queries 0.979 0.673 0.797 0.389 0.935 0.550 0.721

Entropy AND Dist Reference Queries 0.985 0.691 0.812 0.407 0.952 0.570 0.738

Entropy AND Dist Prons 0.917 0.594 0.721 0.294 0.758 0.423 0.624

Entropy AND Intersection Content Displayed 0.870 0.917 0.893 0.511 0.387 0.440 0.821

Entropy AND Intersection Content Clicked 0.861 0.845 0.853 0.358 0.387 0.372 0.762

Intersection Content Displayed AND Dist Referen... 0.876 0.942 0.908 0.610 0.403 0.485 0.844

Intersection Content Displayed AND Dist Prons 0.863 0.838 0.850 0.357 0.403 0.379 0.759

Intersection Content Clicked AND Dist Reference... 0.880 0.921 0.900 0.551 0.435 0.486 0.832

Intersection Content Clicked AND Dist Prons 0.845 0.964 0.901 0.565 0.210 0.306 0.826

Trained Models

Decision Tree 0.832 1.000 0.908 1.000 0.097 0.176 0.835

Decision Tree after Threshold 0.984 0.673 0.799 0.393 0.952 0.557 0.724

Random Forest 0.853 1.000 0.921 1.000 0.226 0.368 0.859
Random Forest after Threshold 0.971 0.723 0.829 0.421 0.903 0.574 0.756

NN 0.932 0.741 0.826 0.395 0.758 0.519 0.744

NN weak supervision 0.970 0.705 0.817 0.406 0.903 0.560 0.741

Ensemble 0 1.000 0.327 0.493 0.249 1.000 0.399 0.450

Ensemble 1 0.988 0.583 0.733 0.341 0.968 0.504 0.653

Ensemble 2 0.984 0.673 0.799 0.393 0.952 0.557 0.724

Single Feature Thresholding

Content Clicked 0.826 0.989 0.900 0.842 0.219 0.348 0.827

Content Displayed 0.828 0.982 0.898 0.773 0.233 0.358 0.824

Dist Reference Queries 0.919 0.704 0.798 0.409 0.767 0.533 0.718

Dist Prons 0.763 0.646 0.700 0.157 0.247 0.191 0.562

Dist Wiki KG 0.789 0.996 0.881 0.000 0.000 0.000 0.787

Entropy 0.889 0.701 0.784 0.374 0.671 0.480 0.695

Intersection Content Clicked 0.842 0.953 0.894 0.649 0.329 0.436 0.821

Intersection Content Displayed 0.852 0.945 0.896 0.651 0.384 0.483 0.827

Min Dist Content 0.872 0.774 0.820 0.404 0.575 0.475 0.732

Combination Thresholding

Dist Prons AND Dist Reference Queries 0.924 0.668 0.775 0.389 0.795 0.523 0.695

Entropy AND Dist Reference Queries 0.929 0.668 0.777 0.393 0.808 0.529 0.697

Entropy AND Dist Prons 0.867 0.737 0.797 0.368 0.575 0.449 0.703

Entropy AND Intersection Content Displayed 0.852 0.945 0.896 0.651 0.384 0.483 0.827

Entropy AND Intersection Content Clicked 0.835 0.978 0.901 0.769 0.274 0.404 0.830

Intersection Content Displayed AND Dist Referen... 0.852 0.949 0.898 0.667 0.384 0.487 0.830

Intersection Content Displayed AND Dist Prons 0.849 0.945 0.895 0.643 0.370 0.470 0.824

Intersection Content Clicked AND Dist Reference... 0.843 0.964 0.899 0.706 0.329 0.449 0.830

Intersection Content Clicked AND Dist Prons 0.835 0.978 0.901 0.769 0.274 0.404 0.830

Trained Models

Decision Tree 0.839 0.967 0.898 0.710 0.301 0.423 0.827

Decision Tree after Threshold 0.865 0.938 0.900 0.660 0.452 0.537 0.836

Random Forest 0.851 0.982 0.912 0.839 0.356 0.500 0.850
Random Forest after Threshold 0.904 0.788 0.842 0.463 0.685 0.552 0.767

NN 0.850 0.971 0.906 0.765 0.356 0.486 0.841

NN weak supervision 0.853 0.956 0.902 0.700 0.384 0.496 0.836

Ensemble 0 0.922 0.391 0.549 0.277 0.877 0.421 0.493

Ensemble 1 0.920 0.668 0.774 0.385 0.781 0.516 0.692

Ensemble 2 0.875 0.814 0.843 0.446 0.562 0.497 0.761

Table 2: Accuracy, Precision, Recall, F1 score for both classes of queries: Casual Music (top half) and Niche Genre (bottom
half).

users, interacting with 86 million results, in 600 million sessions

and 56 million queries. One lens to interpret these results is in

terms of the control group that uses the default ranker optimized

to balance discovery of new content against potentially irrelevant

content. Ideally, the optimal method should increase the number of

queries for which we were able to surface results from under-served

content group, while minimizing user dissatisfaction.

We identify queries for which the treatment ranker surfaced a

search result from Niche Genres and Casual Music, and the control

ranker did not. We also logged whether the user interacted with

the newly surfaced result from the Niche Genre content group, and
used that information to assign satisfaction label to the query. If the

user streamed music from the surfaced content we assign a label

of +1 to the query, 0 otherwise, and we checked the agreement

with our classifiers. For each method, we compute two metrics: (i)
Gain in Exposure, computed based on the number of non-focused
queries identified by the method. Higher numbers are preferred,

since higher number of such identified queries will lead to greater

opportunity to surface content from Niche Genre content group.
Note that models optimizing solely for this might end up over-

surfacing such results, which might lead to user dis-satisfaction. (ii)
Loss in Satisfaction, computed using the proportion of queries where

users did not stream the surfaced under-served content for each

query tagged as non-focused query by any method. Lower numbers

are preferred, as we prefer the model to minimize polluting results

by unnecessarily exposing irrelevant content to users.
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An ideal method would maximize the Gain in Exposure while
minimizing the Loss in Satisfaction metric. Figure 3 presents the

results comparing the different methods on these two metrics, for

both content groups. We observe a good spread of the different

models across the scatter plot, which indicates that good trade-off

based decisions can be made here. This empowers system designers

to select solutions on a need-basis, depending on platform’s current

business requirements. Some methods (e.g., Entropy) fare poorly
in giving useful trade-off for Niche Genre group, since they suffer

from loss in satisfaction without offering much gain in exposure.

On the other hand, some methods are fairly conservative (e.g.,
Decision tree classifier and Intersection of Displayed Content),

which help platforms not to risk any loss in satisfaction but reducing

the number of exposures. Ensemble-0 provides the best trade-off:

significant gains in exposure, with comparable loss in satisfaction.

The Live A/B test highlights that the problem of exposing under-

served content is one of making trade-off based decisions. Certain

models do offer the advantage of giving more exposure to under-

served content, while minimizing the loss of user satisfaction; it

is the choice of the system designer to select which methods are

desired when, based on platform’s business needs.

7 CONCLUSION
In this workwe proposedmultiple features to identify which queries

are better suited to return under-served content while maintaining

user satisfaction. The proposed features are easily computable for

a large set of queries, independently from the fact that they may

not already relate to under-served content. Our results show the

efficacy to use the proposed features in conjunction with a wide

range of models. Paired with the learning models, the prediction

using the features achieves high accuracy, and the detailed results

on both classes of suitable / non-suitable queries for under-served

content show how each model benefit differently from the features.

The results on both classes of queries highlight the importance

of understanding the benefit of each classifier, as this needs to be

taken into consideration by a system designer. Identifying the right

queries to include additional under-served content is a fundamental

step to ensure a healthy, sustainable marketplace.
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